11 research outputs found

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: an architectural survey

    Get PDF
    Over the last couple of years, industry operators’ associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This arti- cle provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi- operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation

    Secretory structures in plants: lessons from the Plumbaginaceae on their origin, evolution and roles in stress tolerance

    Get PDF
    Special IssueThe Plumbaginaceae (non-core Caryophyllales) is a family well known for species adapted to a wide range of arid and saline habitats. Of its salt-tolerant species, at least 45 are in the genus Limonium; two in each of Aegialitis, Limoniastrum and Myriolimon, and one each in Psylliostachys, Armeria, Ceratostigma, Goniolimon and Plumbago. All the halophytic members of the family have salt glands, which are also common in the closely related Tamaricaceae and Frankeniaceae. The halophytic species of the three families can secrete a range of ions (Na+, K+, Ca2+, Mg2+, Cl−, HCO3 −, SO4 2-) and other elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Salt glands are, however, absent in salt-tolerant members of the sister family Polygonaceae. We describe the structure of the salt glands in the three families and consider whether glands might have arisen as a means to avoid the toxicity of Na+ and/or Cl− or to regulate Ca2+ concentrations within the leaves. We conclude that the establishment of lineages with salt glands took place after the split between the Polygonaceae and its sister group the Plumbaginaceaeinfo:eu-repo/semantics/publishedVersio

    Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected <it>aurora B </it>and <it>MSK1 </it>as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation.</p> <p>Methods</p> <p>GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry.</p> <p>Results</p> <p>Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G<sub>1 </sub>phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p) and H3S28 (H3S28p) in association with the downregulation of aurora B and pMSK1 expressions.</p> <p>Conclusions</p> <p>This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.</p

    On Coalition Formation with Heterogeneous Agents

    Full text link

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Current Strategies and Future Outlook for Managing the Neotropical Tomato Pest Tuta absoluta (Meyrick) in the Mediterranean Basin

    No full text

    Global impact of COVID-19 on stroke care

    Get PDF
    BACKGROUND: The COVID-19 pandemic led to profound changes in the organization of health care systems worldwide. AIMS: We sought to measure the global impact of the COVID-19 pandemic on the volumes for mechanical thrombectomy, stroke, and intracranial hemorrhage hospitalizations over a three-month period at the height of the pandemic (1 March-31 May 2020) compared with two control three-month periods (immediately preceding and one year prior). METHODS: Retrospective, observational, international study, across 6 continents, 40 countries, and 187 comprehensive stroke centers. The diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases at participating centers. RESULTS: The hospitalization volumes for any stroke, intracranial hemorrhage, and mechanical thrombectomy were 26,699, 4002, and 5191 in the three months immediately before versus 21,576, 3540, and 4533 during the first three pandemic months, representing declines of 19.2% (95%CI, -19.7 to -18.7), 11.5% (95%CI, -12.6 to -10.6), and 12.7% (95%CI, -13.6 to -11.8), respectively. The decreases were noted across centers with high, mid, and low COVID-19 hospitalization burden, and also across high, mid, and low volume stroke/mechanical thrombectomy centers. High-volume COVID-19 centers (-20.5%) had greater declines in mechanical thrombectomy volumes than mid- (-10.1%) and low-volume (-8.7%) centers (p < 0.0001). There was a 1.5% stroke rate across 54,366 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.9% (784/20,250) of all stroke admissions. CONCLUSION: The COVID-19 pandemic was associated with a global decline in the volume of overall stroke hospitalizations, mechanical thrombectomy procedures, and intracranial hemorrhage admission volumes. Despite geographic variations, these volume reductions were observed regardless of COVID-19 hospitalization burden and pre-pandemic stroke/mechanical thrombectomy volumes
    corecore