7,052 research outputs found
First Study of a HEXITEC Detector for Secondary Particle Characterisation during Proton Beam Therapy
Online proton range verification is a rapidly emerging field characterised by its ability to reduce the error margins during proton beam therapy, as it is patient-specific and in vivo. In particular, secondary prompt gamma detection is a promising tool to monitor the dose delivery. The present research evaluates the capability of a HEXITEC detector to identify the prompt gammas produced during proton beam therapy, and assesses its potential for online range verification. To achieve this, the detector is placed at one side of a water phantom, which is irradiated at different proton energies in the University College London Hospital Proton Centre. For further analysis, Monte Carlo simulations are performed using Geant4 and the same geometry as the experiment. The results show that HEXITEC has the potential to be part of a detection system that could identify secondary prompt gammas within the secondary field produced inside the target, allowing for the in-detector discrimination of these particles via cluster size analysis. The comparison between data sets shows that there is a high level of accuracy between the model and the experimental measurements in terms of secondary flux and charge diffusion inside the detector, which poses the model as a fundamental tool for future optimisation studies
Effective Hamiltonian Constraint from Group Field Theory
Spinfoam models provide a covariant formulation of the dynamics of loop
quantum gravity. They are non-perturbatively defined in the group field theory
(GFT) framework: the GFT partition function defines the sum of spinfoam
transition amplitudes over all possible (discretized) geometries and
topologies. The issue remains, however, of explicitly relating the specific
form of the group field theory action and the canonical Hamiltonian constraint.
Here, we suggest an avenue for addressing this issue. Our strategy is to expand
group field theories around non-trivial classical solutions and to interpret
the induced quadratic kinematical term as defining a Hamiltonian constraint on
the group field and thus on spin network wave functions. We apply our procedure
to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss
the relevance of understanding the spectrum of this Hamiltonian operator for
the renormalization of group field theories.Comment: 14 page
STM induced hydrogen desorption via a hole resonance
We report STM-induced desorption of H from Si(100)-H(2) at negative
sample bias. The desorption rate exhibits a power-law dependence on current and
a maximum desorption rate at -7 V. The desorption is explained by vibrational
heating of H due to inelastic scattering of tunneling holes with the Si-H
5 hole resonance. The dependence of desorption rate on current and bias
is analyzed using a novel approach for calculating inelastic scattering, which
includes the effect of the electric field between tip and sample. We show that
the maximum desorption rate at -7 V is due to a maximum fraction of
inelastically scattered electrons at the onset of the field emission regime.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let
Equilibrium statistical mechanics on correlated random graphs
Biological and social networks have recently attracted enormous attention
between physicists. Among several, two main aspects may be stressed: A non
trivial topology of the graph describing the mutual interactions between agents
exists and/or, typically, such interactions are essentially (weighted)
imitative. Despite such aspects are widely accepted and empirically confirmed,
the schemes currently exploited in order to generate the expected topology are
based on a-priori assumptions and in most cases still implement constant
intensities for links. Here we propose a simple shift in the definition of
patterns in an Hopfield model to convert frustration into dilution: By varying
the bias of the pattern distribution, the network topology -which is generated
by the reciprocal affinities among agents - crosses various well known regimes
(fully connected, linearly diverging connectivity, extreme dilution scenario,
no network), coupled with small world properties, which, in this context, are
emergent and no longer imposed a-priori. The model is investigated at first
focusing on these topological properties of the emergent network, then its
thermodynamics is analytically solved (at a replica symmetric level) by
extending the double stochastic stability technique, and presented together
with its fluctuation theory for a picture of criticality. At least at
equilibrium, dilution simply decreases the strength of the coupling felt by the
spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main
difference with respect to previous investigations and a naive picture is that
within our approach replicas do not appear: instead of (multi)-overlaps as
order parameters, we introduce a class of magnetizations on all the possible
sub-graphs belonging to the main one investigated: As a consequence, for these
objects a closure for a self-consistent relation is achieved.Comment: 30 pages, 4 figure
A miniaturized 4 K platform for superconducting infrared photon counting detectors
We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule–Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection
Bubbles and jackets: new scaling bounds in topological group field theories
We use a reformulation of topological group field theories in 3 and 4
dimensions in terms of variables associated to vertices, in 3d, and edges, in
4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4
dimensions, we obtain a bubble bound proving the suppression of singular
topologies with respect to the first terms in the perturbative expansion (in
the cut-off). We also prove a new, stronger jacket bound than the one currently
available in the literature. We expect these results to be relevant for other
tensorial field theories of this type, as well as for group field theory models
for 4d quantum gravity.Comment: v2: Minor modifications to match published versio
Cosmology of the Lifshitz universe
We study the ultraviolet complete non-relativistic theory recently proposed
by Horava. After introducing a Lifshitz scalar for a general background, we
analyze the cosmology of the model in Lorentzian and Euclidean signature.
Vacuum solutions are found and it is argued the existence of non-singular
bouncing profiles. We find a general qualitative agreement with both the
picture of Causal Dynamical Triangulations and Quantum Einstein Gravity.
However, inflation driven by a Lifshitz scalar field on a classical background
might not produce a scale-invariant spectrum when the principle of detailed
balance is assumed.Comment: 23 pages. v2: one reference and one equation added, main conclusions
unchanged; v3: matches published version, discussion improved, typos
correcte
Recommended from our members
SEIS: Insight's Seismic Experiment for Internal Structure of Mars.
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.Electronic supplementary materialThe online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users
Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model
A dual formulation of group field theories, obtained by a Fourier transform
mapping functions on a group to functions on its Lie algebra, has been proposed
recently. In the case of the Ooguri model for SO(4) BF theory, the variables of
the dual field variables are thus so(4) bivectors, which have a direct
interpretation as the discrete B variables. Here we study a modification of the
model by means of a constraint operator implementing the simplicity of the
bivectors, in such a way that projected fields describe metric tetrahedra. This
involves a extension of the usual GFT framework, where boundary operators are
labelled by projected spin network states. By construction, the Feynman
amplitudes are simplicial path integrals for constrained BF theory. We show
that the spin foam formulation of these amplitudes corresponds to a variant of
the Barrett-Crane model for quantum gravity. We then re-examin the arguments
against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page
Composite Leptoquarks at the LHC
If electroweak symmetry breaking arises via strongly-coupled physics, the
observed suppression of flavour-changing processes suggests that fermion masses
should arise via mixing of elementary fermions with composite fermions of the
strong sector. The strong sector then carries colour charge, and may contain
composite leptoquark states, arising either as TeV scale resonances, or even as
light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to
colour, get a mass of the order of several hundred GeV, beyond the reach of
current searches at the Tevatron. The same generic mechanism that suppresses
flavour-changing processes suppresses leptoquark-mediated rare processes,
making it conceivable that the many stringent constraints may be evaded. The
leptoquarks couple predominantly to third-generation quarks and leptons, and
the prospects for discovery at LHC appear to be good. As an illustration, a
model based on the Pati-Salam symmetry is described, and its embedding in
models with a larger symmetry incorporating unification of gauge couplings,
which provide additional motivation for leptoquark states at or below the TeV
scale, is discussed.Comment: 10 pp, version to appear in JHE
- …