5 research outputs found
Telemedicine in the face of the COVID-19 pandemic
The novel coronavirus SARS-CoV-2 is a positive single-stranded RNA virus that can be immediately translated and integrated into the host cell with its own RNA messenger, facilitating replication inside the cell and infectivity. The rapid progression of the disease presents a real challenge for the whole world. As the usual capacity for citizen care is exceeded, health professionals and governments struggle. One of the most important strategies to reduce and mitigate the advance of the epidemic are social distance measures; this is where telemedicine can help, and provide support to the healthcare systems, especially in the areas of public health, prevention and clinical practices, just as it is doing in others sectors.
Telemedicine connects the convenience, low cost, and ready accessibility of health-related information and communication using the Internet and associated technologies. Telemedicine during the coronavirus epidemic has been the doctors’ first line of defense to slow the spread of the coronavirus, keeping social distancing and providing services by phone or videoconferencing for mild to focus personal care and limited supplies to the most urgent cases
Safety profile of the adjuvanted recombinant zoster vaccine : Pooled analysis of two large randomised phase 3 trials
The ZOE-50 (NCT01165177) and ZOE-70 (NCT01165229) phase 3 clinical trials showed that the adjuvanted recombinant zoster vaccine (RZV) was ≥90% efficacious in preventing herpes zoster in adults. Here we present a comprehensive overview of the safety data from these studies. Adults aged ≥50 (ZOE-50) and ≥70 (ZOE-70) years were randomly vaccinated with RZV or placebo. Safety analyses were performed on the pooled total vaccinated cohort, consisting of participants receiving at least one dose of RZV or placebo. Solicited and unsolicited adverse events (AEs) were collected for 7 and 30 days after each vaccination, respectively. Serious AEs (SAEs) were collected from the first vaccination until 12 months post-last dose. Fatal AEs, vaccination-related SAEs, and potential immune-mediated diseases (pIMDs) were collected during the entire study period. Safety was evaluated in 14,645 RZV and 14,660 placebo recipients. More RZV than placebo recipients reported unsolicited AEs (50.5% versus 32.0%); the difference was driven by transient injection site and solicited systemic reactions that were generally seen in the first week post-vaccination. The occurrence of overall SAEs (RZV: 10.1%; Placebo: 10.4%), fatal AEs (RZV: 4.3%; Placebo: 4.6%), and pIMDs (RZV: 1.2%; Placebo: 1.4%) was balanced between groups. The occurrence of possible exacerbations of pIMDs was rare and similar between groups. Overall, except for the expected local and systemic symptoms, the safety results were comparable between the RZV and Placebo groups irrespective of participant age, gender, or race. No safety concerns arose, supporting the favorable benefit-risk profile of RZV
Safety profile of the adjuvanted recombinant zoster vaccine : Pooled analysis of two large randomised phase 3 trials
Background: The ZOE-50 (NCT01165177) and ZOE-70 (NCT01165229) phase 3 clinical trials showed that the adjuvanted recombinant zoster vaccine (RZV) was >= 90% efficacious in preventing herpes zoster in adults. Here we present a comprehensive overview of the safety data from these studies. Methods: Adults aged >= 50 (ZOE-50) and >= 70 (ZOE-70) years were randomly vaccinated with RZV or placebo. Safety analyses were performed on the pooled total vaccinated cohort, consisting of participants receiving at least one dose of RZV or placebo. Solicited and unsolicited adverse events (AEs) were collected for 7 and 30 days after each vaccination, respectively. Serious AEs (SAEs) were collected from the first vaccination until 12 months post-last dose. Fatal AEs, vaccination-related SAEs, and potential immune-mediated diseases (pIMDs) were collected during the entire study period. Results: Safety was evaluated in 14,645 RZV and 14,660 placebo recipients. More RZV than placebo recipients reported unsolicited AEs (50.5% versus 32.0%); the difference was driven by transient injection site and solicited systemic reactions that were generally seen in the first week post-vaccination. The occurrence of overall SAEs (RZV: 10.1%; Placebo: 10.4%), fatal AEs (RZV: 4.3%; Placebo: 4.6%), and pIMDs (RZV: 1.2%; Placebo: 1.4%) was balanced between groups. The occurrence of possible exacerbations of pIMDs was rare and similar between groups. Overall, except for the expected local and systemic symptoms, the safety results were comparable between the RZV and Placebo groups irrespective of participant age, gender, or race. Conclusions: No safety concerns arose, supporting the favorable benefit-risk profile of RZV.