2,405 research outputs found
Length-weight relationships of coral reef fishes from the Alacran Reef, Yucatan, Mexico
Length-weight relationships were computed for 42 species of coral reef fishes from 14 families from the Alacran Reef (Yucatan, Mexico). A total of 1 892 individuals was used for this purpose. The fish species were caught by different fishing techniques such as fishhooks, harpoons, gill and trawl nets. The sampling period was from March 1998 to January 2000
Turbulent kinetic energy in the energy balance of a solar flare
The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to X-rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component -- the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only \sim (0.5-1)\% of the energy released, its relatively rapid (\sim1-10~s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites
Phenomenological High Precision Neutron-Proton Delta-Shell Potential
We provide a successful fit for proton-neutron scattering below pion
production threshold up to LAB energies of 350 MeV. We use seven high-quality
fits based on potentials with different forms as a measure of the systematic
uncertainty. We represent the interaction as a sum of delta-shells in
configuration space below the 3fm and a charge dependent one pion exchange
potential above 3fm together with magnetic and vacuum polarization effects.
Special attention is paid to estimate the errors of the phenomenological
interaction.Comment: 5 pages, 2 figures. Comments and one figure with differential
observables adde
Thick and Thin Film Solar Cells: New Formulation
Solar cells rely on photogeneration of charge carriers in p-n junctions and their transport and subsequent recombination in the quasineutral regions. Several basic issues concerning the physics of the operation of solar cells remain obscure. This paper discusses some of those unsolved basic problems. In conventional solar cells, recombination of photogenerated charge carriers plays a major limiting role in the cell efficiency. High quality thin-film solar cells may overcome this limit if the minority diffusion lengths become large as compared to the cell dimensions, but, strikingly, the conventional model fails to describe the cell electric behavior under these conditions. A new formulation of the basic equations describing charge carrier transport in the cell along with a set of boundary conditions is presented. An analytical closed-form solution is obtained under the linear approximation. It is shown that the calculation of the open-circuit voltage of the solar cell diode does not lead to unphysical results in the new given framework
Calibration of Smearing and Cooling Algorithms in SU(3)-Color Gauge Theory
The action and topological charge are used to determine the relative rates of
standard cooling and smearing algorithms in pure SU(3)-color gauge theory. We
consider representative gauge field configurations on lattices
at and lattices at . We find the
relative rate of variation in the action and topological charge under various
algorithms may be succinctly described in terms of simple formulae. The results
are in accord with recent suggestions from fat-link perturbation theory.Comment: RevTeX, 25 pages, 22 figures, full resolution jpeg version of Fig. 22
can be obtained from
http://www.physics.adelaide.edu.au/cssm/papers_etc/SmearingComp.jp
Vortex states in binary mixture of Bose-Einstein condensates
The vortex configurations in the Bose-Einstein condensate of the mixture of
two different spin states |F=1,m_f=-1> and |2,1> of ^{87}Rb atoms corresponding
to the recent experiments by Matthews et. al. (Phys. Rev. Lett. 83, 2498
(1999)) are considered in the framework of the Thomas-Fermi approximation as
functions of N_2/N_1, where N_1 is the number of atoms in the state |1,-1> and
N_2 - in the state |2,1>. It is shown that for nonrotating condensates the
configuration with the |1,-1> fluid forming the shell about the |2,1> fluid
(configuration "a") has lower energy than the opposite configuration
(configuration "b") for all values of N_2/N_1. When the |1,-1> fluid has net
angular momentum and forms an equatorial ring around the resting central
condensate |2,1>, the total energy of the system is higher than the ground
energy, but the configuration "a" has lower energy than the configuration "b"
for all N_2/N_1. On the other hand, when the |2> fluid has the net angular
momentum, for the lowest value of the angular momentum \hbar l (l=1) there is
the range of the ratio N_2/N_1 where the configuration "b" has lower energy
than the configuration "a". For higher values of the angular momentum the
configuration "b" is stable for all values of N_2/N_1.Comment: minor changes, references adde
Spatial representation of temporal information through spike timing dependent plasticity
We suggest a mechanism based on spike time dependent plasticity (STDP) of
synapses to store, retrieve and predict temporal sequences. The mechanism is
demonstrated in a model system of simplified integrate-and-fire type neurons
densely connected by STDP synapses. All synapses are modified according to the
so-called normal STDP rule observed in various real biological synapses. After
conditioning through repeated input of a limited number of of temporal
sequences the system is able to complete the temporal sequence upon receiving
the input of a fraction of them. This is an example of effective unsupervised
learning in an biologically realistic system. We investigate the dependence of
learning success on entrainment time, system size and presence of noise.
Possible applications include learning of motor sequences, recognition and
prediction of temporal sensory information in the visual as well as the
auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio
Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene
Recovery of recycled acrylonitrile-butadiene-styrene (ABS) through mixing with styrene-ethylene/butylene-styrene (SEBS) has been studied in this paper. To simulate recycled ABS, virgin ABS was processed through 5 cycles, at extreme processing temperatures, 220 degrees C and 260 degrees C. The virgin ABS, the virgin SEBS, the recycled ABS and the mixtures were mechanically, thermally and rheologically characterized after the various cycles of reprocessing in order to evaluate their corresponding properties and correlate them with the number of cycles undergone. With these data and using Computer Aided Engineering (CAE) the injection process was simulated by obtaining the optimal injection process parameters. Mixtures were injected at two temperatures in a sensorised mold correlating the shrinkage of the parts with temperature.
The results show that tensile strength of ABS remains practically constant as the number of reprocessing cycles increases, while in the material injected with SEBS the tensile strength decreases. Concerning the Charpy notched impact strength; the values of the ABS reprocessed at 220 degrees C remain more or less unchanged, while the values for 260 C show a significant decrease. The adhesion of the SEBS causes, in both cases, an increase in impact strength. DSC techniques enabled us to observe how the glass transition temperature (T-g) remains more or less constant regardless of the number of cycles or the temperature, whereas the crosslinking is much greater in the samples reprocessed at 260 C.
Finally, the viscosity decreases with each cycle and this decrease becomes even more noticeable with the addition of SEBS, and also that the parts molded at lower temperatures have less shrinkage. (c) 2013 Elsevier B.V. All rights reserved.We would like to thank the Vice-Directorate of Research, Development and Innovation of the Polytechnic University of Valencia for the help granted to the project: "Ternary systems research applied to polymeric materials for the upgrading of waste styrene", Ref: 20091056 within the program of First Projects of Investigation (PAID 06-09) where this work is framed.Peydro, MA.; Parres, F.; Crespo Amorós, JE.; Navarro Vidal, R. (2013). Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene. Journal of Materials Processing Technology. 213(8):1268-1283. https://doi.org/10.1016/j.jmatprotec.2013.02.012S12681283213
- …