2,841 research outputs found

    X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?

    Full text link
    This work analyzes the X-ray, EUV and UV emission apparently coming from the Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA during a transit across the solar disk occurred in 2012. We have measured significant X-Ray, EUV and UV flux from Venus dark side. As a check we have also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT in 2006. We have used the latest version of the Hinode/XRT Point Spread Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove possible instrumental scattering. Even after deconvolution, the flux from Venus shadow remains significant while in the case of Mercury it becomes negligible. Since stray-light contamination affects the XRT Ti-poly filter data from the Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter data, which is not affected by the light leak. Even the Al-mesh filter data show residual flux. We have also found significant EUV (304 A, 193 A, 335 A) and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV emission from Venus dark side is reduced when appropriate deconvolution methods are applied; the emission remains significant, however. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to the average flux of the solar regions around Venus obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest it may be due to scatter occurring in the very long magnetotail of Venus.Comment: This paper has been accepted in The Astrophysical Journa

    Chaotic Evolution in Quantum Mechanics

    Full text link
    A quantum system is described, whose wave function has a complexity which increases exponentially with time. Namely, for any fixed orthonormal basis, the number of components required for an accurate representation of the wave function increases exponentially.Comment: 8 pages (LaTeX 16 kB, followed by PostScript 2 kB for figure

    Quantum Field Theory with Null-Fronted Metrics

    Full text link
    There is a large class of classical null-fronted metrics in which a free scalar field has an infinite number of conservation laws. In particular, if the scalar field is quantized, the number of particles is conserved. However, with more general null-fronted metrics, field quantization cannot be interpreted in terms of particle creation and annihilation operators, and the physical meaning of the theory becomes obscure.Comment: 11 page

    Optical doping and damage formation in AIN by Eu implantation

    Get PDF
    AlN films grown on sapphire were implanted with 300 keV Eu ions to fluences from 3×1014 to 1.4×1017 atoms/cm2 in two different geometries: “channeled” along the c-axis and “random” with a 10° angle between the ion beam and the surface normal. A detailed study of implantation damage accumulation is presented. Strong ion channeling effects are observed leading to significantly decreased damage levels for the channeled implantation within the entire fluence range. For random implantation, a buried amorphous layer is formed at the highest fluences. Red Eu-related photoluminescence at room temperature is observed in all samples with highest intensities for low damage samples (low fluence and channeled implantation) after annealing. Implantation damage, once formed, is shown to be stable up to very high temperatures.FCT - POCI/FIS/57550/2004FCT - PTDC/FIS/66262/2006FCT - PTDC/CTM/100756/200

    Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems

    Full text link
    We perform the quantitative evaluation of the entanglement dynamics in scattering events between two insistinguishable electrons interacting via Coulomb potential in 1D and 2D semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the timedependent numerical solution of the two-particle wavefunction of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, singlet, and triplet spin state. The procedure allows to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.Comment: 22 pages, 7 figures, submitted to Physical Review

    Evolution of Liouville density of a chaotic system

    Full text link
    An area-preserving map of the unit sphere, consisting of alternating twists and turns, is mostly chaotic. A Liouville density on that sphere is specified by means of its expansion into spherical harmonics. That expansion initially necessitates only a finite number of basis functions. As the dynamical mapping proceeds, it is found that the number of non-negligible coefficients increases exponentially with the number of steps. This is to be contrasted with the behavior of a Schr\"odinger wave function which requires, for the analogous quantum system, a basis of fixed size.Comment: LaTeX 4 pages (27 kB) followed by four short PostScript files (2 kB + 2 kB + 1 kB + 4 kB

    Kochen-Specker theorem for a single qubit using positive operator-valued measures

    Full text link
    A proof of the Kochen-Specker theorem for a single two-level system is presented. It employs five eight-element positive operator-valued measures and a simple algebraic reasoning based on the geometry of the dodecahedron.Comment: REVTeX4, 4 pages, 2 figure

    Filtering of the absolute value of photon-number difference for two-mode macroscopic quantum superpositions

    Full text link
    We discuss a device capable of filtering out two-mode states of light with mode populations differing by more than a certain threshold, while not revealing which mode is more populated. It would allow engineering of macroscopic quantum states of light in a way which is preserving specific superpositions. As a result, it would enhance optical phase estimation with these states as well as distinguishability of "macroscopic" qubits. We propose an optical scheme, which is a relatively simple, albeit non-ideal, operational implementation of such a filter. It uses tapping of the original polarization two-mode field, with a polarization neutral beam splitter of low reflectivity. Next, the reflected beams are suitably interfered on a polarizing beam splitter. It is oriented such that it selects unbiased polarization modes with respect to the original ones. The more an incoming two-mode Fock state is unequally populated, the more the polarizing beam splitter output modes are equally populated. This effect is especially pronounced for highly populated states. Additionally, for such states we expect strong population correlations between the original fields and the tapped one. Thus, after a photon-number measurement of the polarizing beam splitter outputs, a feed-forward loop can be used to let through a shutter the field, which was transmitted by the tapping beam splitter. This happens only if the counts at the outputs are roughly equal. In such a case, the transmitted field differs strongly in occupation number of the two modes, while information on which mode is more populated is non-existent (a necessary condition for preserving superpositions).Comment: 11 pages, 12 figure

    Wigner's little group and Berry's phase for massless particles

    Full text link
    The ``little group'' for massless particles (namely, the Lorentz transformations Λ\Lambda that leave a null vector invariant) is isomorphic to the Euclidean group E2: translations and rotations in a plane. We show how to obtain explicitly the rotation angle of E2 as a function of Λ\Lambda and we relate that angle to Berry's topological phase. Some particles admit both signs of helicity, and it is then possible to define a reduced density matrix for their polarization. However, that density matrix is physically meaningless, because it has no transformation law under the Lorentz group, even under ordinary rotations.Comment: 4 pages revte

    Mass media destabilizes the cultural homogeneous regime in Axelrod's model

    Full text link
    An important feature of Axelrod's model for culture dissemination or social influence is the emergence of many multicultural absorbing states, despite the fact that the local rules that specify the agents interactions are explicitly designed to decrease the cultural differences between agents. Here we re-examine the problem of introducing an external, global interaction -- the mass media -- in the rules of Axelrod's model: in addition to their nearest-neighbors, each agent has a certain probability pp to interact with a virtual neighbor whose cultural features are fixed from the outset. Most surprisingly, this apparently homogenizing effect actually increases the cultural diversity of the population. We show that, contrary to previous claims in the literature, even a vanishingly small value of pp is sufficient to destabilize the homogeneous regime for very large lattice sizes
    corecore