58 research outputs found

    Interdependence between training and magnetization reversal in granular Co-CoO exchange bias systems

    Get PDF
    The interdependence between training and magnetization reversal in granular Co-CoO exchange bias (EB) systems prepared byOion implantation inCo thin films is demonstrated by polarized neutron reflectometry. While high-fluence O-implanted thin films show reduced relative training values and no asymmetry in magnetization reversal (all reversals take place by domain wall nucleation and motion), low-fluence O ion implantation results in an increased relative training and a magnetization reversal asymmetry between the first descending and the first ascending branches. Whereas the untrained decreasing field reversal occurs mainly by domain wall nucleation and motion, traces of a domain rotation contribution are evidenced in the increasing field reversal. This is explained by the evolution of the CoO structure and the contribution of the out-of-plane magnetization with ion implantation. The amount of incorporated O, which determines the threshold between both behaviors, is around 20 at.%. This reveals that the interdependence between training and magnetization reversal is insensitive to the morphology of the constituents (i.e., granular or layered), indicating that this is an intrinsic EB effect, which can be conveniently tailored by the interplay between the intrinsic properties of the investigated materials and ion implantation

    A versatile apparatus for on-line emission channeling experiments

    No full text
    The concept and functionality of an apparatus dedicated to emission channeling experiments using short-lived isotopes on-line at ISOLDE/CERN is described. The setup is assembled in two functional blocks - (a) base stand including beam collimation, implantation and measurement chamber, cryogenic extension, and vacuum control system and - (b) Panmure goniometer extension including maneuvering cradle and sample heating furnace. This setup allows for in situ implantation and sample analysis in the as-implanted state and upon cooling down to 50 K and during annealing up to 1200 K. The functionality of the setup will be illustrated with the example of establishing the lattice location of 56^{56}Mn probes implanted into GaAs

    Lattice sites of Na dopants in ZnO

    No full text
    The angular distribution of beta− particles emitted by the radioactive isotope 24Na was monitored following implantation into ZnO single crystals at fluences above 5E12 cm−2 at CERN’s ISOLDE facility. We identified sodium on two distinct sites: on substitutional Zn sites and on interstitial sites that are close to the so-called octahedral site. The interstitial Na was to large extent converted to substitutional Na already for annealing at 200°C, from which an activation energy of 0.8−1.3 eV, most likely around 1.2 eV, is estimated for the migration of interstitial Na in ZnO

    Tuning the ferromagnetic-antiferromagnetic interfaces of granular Co-CoO exchange bias systems by annealing

    Get PDF
    The low-temperature magnetic behavior of granular Co-CoO exchange bias systems, prepared by oxygen ion implantation in Co thin films and subsequent annealing, is addressed. The thermal activation effects lead to an O migration which results in virtually pure Co areas embedded in a structurally relaxed and nearly stoichiometric CoO phase. This yields decreased training and exchange bias shifts, while the blocking temperature significantly increases, coming close to the N'eel temperature of bulk CoO for samples implanted to a fluence above 1 x 1017 ions/cm² (15% O). The dependence of the exchange bias shift on the pristine O-implanted content is analogous to that of the antiferromagnetic thickness in most ferromagnetic/antiferromagnetic systems (i.e., an increase in the exchange bias shift up to a maximum followed by a decrease until a steady state is reached), suggesting that, after annealing, the enriched Co areas might be rather similar in size for samples implanted above 1 x 1017 ions/cm², whereas the corresponding CoO counterparts become enlarged with pristine O content (i.e., effect of the antiferromagnet size). This study demonstrates that the magnetic properties of granular Co-CoO systems can be tailored by controllably modifying the local microstructure through annealing treatments

    Tuning the ferromagnetic-antiferromagnetic interfaces of granular Co-CoO exchange bias systems by annealing

    No full text
    The low-temperature magnetic behavior of granular Co-CoO exchange bias systems, prepared by oxygen ion implantation in Co thin films and subsequent annealing, is addressed. The thermal activation effects lead to an O migration which results in virtually pure Co areas embedded in a structurally relaxed and nearly stoichiometric CoO phase. This yields decreased training and exchange bias shifts, while the blocking temperature significantly increases, coming close to the N'eel temperature of bulk CoO for samples implanted to a fluence above 1 x 1017 ions/cm² (15% O). The dependence of the exchange bias shift on the pristine O-implanted content is analogous to that of the antiferromagnetic thickness in most ferromagnetic/antiferromagnetic systems (i.e., an increase in the exchange bias shift up to a maximum followed by a decrease until a steady state is reached), suggesting that, after annealing, the enriched Co areas might be rather similar in size for samples implanted above 1 x 1017 ions/cm², whereas the corresponding CoO counterparts become enlarged with pristine O content (i.e., effect of the antiferromagnet size). This study demonstrates that the magnetic properties of granular Co-CoO systems can be tailored by controllably modifying the local microstructure through annealing treatments

    Direct Structural Identification and Quantification of the Split-Vacancy Configuration for Implanted Sn in Diamond

    No full text
    We demonstrate formation of the ideal split-vacancy configuration of the Sn-vacancy center upon implantation into natural diamond. Using beta-emission channeling following low fluence 121Sn implantation (2E12 atoms/cm2, 60 keV) at the ISOLDE facility at CERN, we directly identified and quantified the atomic configurations of the Sn-related centers. Our data show that the split-vacancy configuration is formed immediately upon implantation with a surprisingly high efficiency of ~40%. Upon thermal annealing at 920°C ~30% of Sn is found in the ideal bond-center position. Photoluminescence revealed the characteristic SnV- line at 621 nm, with an extraordinarily narrow ensemble linewidth (2.3 nm) of near-perfect Lorentzian shape. These findings further establish the SnV- center as a promising candidate for single photon emission applications, since, in addition to exceptional optical properties, it also shows a remarkably simple structural formation mechanism

    Mixed Zn and O substitution of Co and Mn in ZnO

    No full text
    The physical properties of an impurity atom in a semiconductor are primarily determined by the lattice site it occupies. In general, this occupancy can be correctly predicted based on chemical intuition, but not always. We report on one such exception in the dilute magnetic semiconductors Co- and Mn-doped ZnO, experimentally determining the lattice location of Co and Mn using β\beta-emission channeling from the decay of radioactive 61^{61}Co and 56^{56}Mn implanted at the ISOLDE facility at CERN. Surprisingly, in addition to the majority substituting for Zn, we find up to 18% (27%) of the Co (Mn) atoms in O sites, which is virtually unaffected by thermal annealing up to 900 °C. We discuss how this anion site configuration, which had never been considered before for any transition metal in any metal oxide material, may in fact have a low formation energy. This suggests a change in paradigm regarding transition-metal incorporation in ZnO and possibly other oxides and wide-gap semiconductors

    Lattice sites of implanted Na in GaN and AlN in comparison to other light alkalis and alkaline earths

    No full text
    The lattice location of ion implanted radioactive 24Na (t1/2=14.96 h) in GaN and AlN was determined using the emission channeling technique at the ISOLDE/CERN facility. In the room temperature as-implanted state in both GaN and AlN, the majority of the sodium atoms are found on interstitial sites near the octahedral position, with a minority on cation Ga or Al substitutional sites. Following annealing at 800-900°C the interstitial fraction is reduced while the substitutional incorporation increases. Our results thus further establish the amphoteric character of Na in GaN and AlN, in analogy to the other light alkali Li, and alkaline earths Be and Mg. The site changes upon annealing are attributed to the onset of migration of interstitial Na, for which an activation energy of 2.2-3.4 eV is estimated in GaN and 2.0-3.1 eV in AlN, and its subsequent capture by cation vacancies resulting from the implan-tation. Comparison of the lattice site change behavior of Li, Be, Na and Mg shows that the onset of interstitial mi-gration correlates with the ionic radii of these elements

    Lattice location of implanted transition metals in 3C–SiC

    No full text
    We have investigated the lattice location of implanted transition metal (TM) 56Mn, 59Fe and 65Ni ions in undoped single-crystalline cubic 3C–SiC by means of the emission channeling technique using radioactive isotopes produced at the CERN-ISOLDE facility. We find that in the room temperature as-implanted state, most Mn, Fe and Ni atoms occupy carbon-coordinated tetrahedral interstitial sites (TC). Smaller TM fractions were also found on Si substitutional (SSi) sites. The TM atoms partially disappear from ideal-TC positions during annealing at temperatures between 500 °C and 700 °C, which is accompanied by an increase in the TM fraction occupying both SSi sites and random sites. An explanation is given according to what is known about the annealing mechanisms of silicon vacancies in silicon carbide. The origin of the observed lattice sites and their changes with thermal annealing are discussed and compared to the case of Si, highlighting the feature that the interstitial migration of TMs in SiC is much slower than in Si
    corecore