27,500 research outputs found

    Non-perturbative treatment of the linear covariant gauges by taking into account the Gribov copies

    Full text link
    In this paper, a proposal for the restriction of the Euclidean functional integral to a region free of infinitesimal Gribov copies in linear covariant gauges is discussed. An effective action, akin to the Gribov-Zwanziger action of the Landau gauge, is obtained which implements the aforementioned restriction. Although originally non-local, this action can be cast in local form by introducing auxiliary fields. As in the case of the Landau gauge, dimension two condensates are generated at the quantum level, giving rise to a refinement of the action which is employed to obtain the tree-level gluon propagator in linear covariant gauges. A comparison of our results with those available from numerical lattice simulations is also provided.Comment: 21 pages, no figures, version to appear in EPJ

    An exact nilpotent non-perturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge

    Get PDF
    We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.Comment: 8 pages. v2: version accepted for publication in PhysRev

    More on the non-perturbative Gribov-Zwanziger quantization of linear covariant gauges

    Get PDF
    In this paper, we discuss the gluon propagator in the linear covariant gauges in D=2,3,4D=2,3,4 Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for D=3,4D=3,4, the gluon propagator displays a massive (decoupling) behaviour, while for D=2D=2, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.Comment: 15 pages, 1 figure; V2 typos fixed and inclusion of section on the ghost propagator. To appear in PhysRev

    The universal character of Zwanziger's horizon function in Euclidean Yang-Mills theories

    Get PDF
    In light of the recently established BRST invariant formulation of the Gribov-Zwanziger theory, we show that Zwanziger's horizon function displays a universal character. More precisely, the correlation functions of local BRST invariant operators evaluated with the Yang-Mills action supplemented with a BRST invariant version of the Zwanziger's horizon function and quantized in an arbitrary class of covariant, color invariant and renormalizable gauges which reduce to the Landau gauge when all gauge parameters are set to zero, have a unique, gauge parameters independent result, corresponding to that of the Landau gauge when the restriction to the Gribov region Ω\Omega in the latter gauge is imposed. As such, thanks to the BRST invariance, the cut-off at the Gribov region Ω\Omega acquires a gauge independent meaning in the class of the physical correlators.Comment: 14 pages. v2: version accepted by Phys.Lett.

    EFFECTS OF THE USE OF D-LIMONENE AS AN ADDITIVE TO DIESEL-BIODIESEL BLENDS ON EXHAUST GASES COMPOSITION OF COMPRESSION IGNITION ENGINES

    Get PDF
    The transesterification of vegetable oils results in methyl esters of fatty acid, known as biodiesel. This one presents similar features of diesel oil, such as cetane number, specific weight, heat of combustion and air-fuel ratio. However, arising problems from its higher viscosity leads to a poor spraying by the fuel injectors and so to a low-grade combustion, causing formation of undesirable deposits inside the engine, changes in the properties of the lubricating oil and in the composition of the exhaust gas. Owing to this issue, it is necessary to study an additive able to make biodiesel characteristics more appropriate to be used in compression ignition engines, as well as a monitoring of changes in exhaust gas composition. The chosen additive was d-limonene, a monocyclic terpene obtained as a byproduct of citriculture. This paper presents the preliminary results obtained from the tests in a stationary diesel engine fuelled with mixtures of diesel-biodiesel and d-limonene, in different concentrations, comparing to regular diesel fuel. Although it was used in low concentrations, the additive was efficient in the reduction of hydrocarbons, carbon monoxide and opacity

    Aeroacoustics of sawtooth trailing-edge serrations under aerodynamic loading

    Get PDF
    The impact of aerodynamic loading on a serrated trailing edge is studied experimentally. Aerodynamic and acoustic measurements are conducted on a sawtooth-shaped trailing edge, retrofitted to a flat plate featuring a trailing-edge flap, and placed at incidence to the free-stream flow. The turbulent flow across the trailing edge is inspected by time-resolved three-dimensional velocity field measurements obtained from 4D-PIV, while the wall-pressure fluctuations are measured with surface-embedded microphones. Results discuss the relation between the velocity fluctuations over the serrations, the surface pressure fluctuations, and the far-field noise spectra. The aerodynamic analysis discusses the effect of counter-rotating vortex pairs, generated by the pressure imbalance across the edges of the serrations under loading. It is shown that the interaction of these vortices with the incoming turbulence affects the intensity of the wall-pressure spectrum at the outer rim of the serration surface. On the suction side, the intensity of the pressure fluctuations from the incoming boundary layer dominates over that induced by the vortex pairs. On the pressure side, instead, the velocity gradient prescribed by the vortex pairs produces a significant increase of the pressure fluctuations around the edges. The resulting spatial distribution of the wall-pressure fluctuations directly affects the far-field noise. Scattering predictions carried out with the wall-pressure fluctuations in the centre and root (on the suction side) exhibit good agreement with the measured noise in the low-frequency range, whereas using the surface pressure data at the tip of the serration (on the pressure side) yields a better prediction in the high-frequency range
    • …
    corecore