41 research outputs found

    First GPS Baseline Results from the North Andes

    Get PDF
    The CASA UNO GPS (Global Positioning System) experiment (January-February 1988) has provided the first epoch baseline measurements for the study of plate motions and crustal deformation in and around the North Andes. Two dimensional horizontal baseline repeatabilities are as good as 5 parts in 108 for short baselines (100-1000km), and better than3 parts in 108 for long baselines (\u3e1000km). Vertical repeatabilities are typically 4 -6 cm, with a weak dependence on baseline length. The expected rate of plate convergence across the Colombia Trench is 6-8 cm/yr, which should be detectable by the repeat experiment planned for 1991. Expected deformation rates within the North Andes are of the order of 1 cm/yr, which may be detectable with the 1991 experiment

    Australia's National Bowel Cancer Screening Program: does it work for Indigenous Australians?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite a lower incidence of bowel cancer overall, Indigenous Australians are more likely to be diagnosed at an advanced stage when prognosis is poor. Bowel cancer screening is an effective means of reducing incidence and mortality from bowel cancer through early identification and prompt treatment. In 2006, Australia began rolling out a population-based National Bowel Cancer Screening Program (NBCSP) using the Faecal Occult Blood Test. Initial evaluation of the program revealed substantial disparities in bowel cancer screening uptake with Indigenous Australians significantly less likely to participate in screening than the non-Indigenous population.</p> <p>This paper critically reviews characteristics of the program which may contribute to the discrepancy in screening uptake, and includes an analysis of organisational, structural, and socio-cultural barriers that play a part in the poorer participation of Indigenous and other disadvantaged and minority groups.</p> <p>Methods</p> <p>A search was undertaken of peer-reviewed journal articles, government reports, and other grey literature using electronic databases and citation snowballing. Articles were critically evaluated for relevance to themes that addressed the research questions.</p> <p>Results</p> <p>The NBCSP is not reaching many Indigenous Australians in the target group, with factors contributing to sub-optimal participation including how participants are selected, the way the screening kit is distributed, the nature of the test and comprehensiveness of its contents, cultural perceptions of cancer and prevailing low levels of knowledge and awareness of bowel cancer and the importance of screening.</p> <p>Conclusions</p> <p>Our findings suggest that the population-based approach to implementing bowel cancer screening to the Australian population unintentionally excludes vulnerable minorities, particularly Indigenous and other culturally and linguistically diverse groups. This potentially contributes to exacerbating the already widening disparities in cancer outcomes that exist among Indigenous Australians. Modifications to the program are recommended to facilitate access and participation by Indigenous and other minority populations. Further research is also needed to understand the needs and social and cultural sensitivities of these groups around cancer screening and inform alternative approaches to bowel cancer screening.</p

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III: DUNE Far Detector Technical Coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report
    corecore