111 research outputs found

    Clay mineralogy of tephras and associated paleosols and soils, and hydrothermal deposits, North Island [New Zealand]

    Get PDF
    Tour themes and itinerary The tour centres on the occurrence and genesis of clay minerals, especially allophane, halloysite, and ferrihydrite, associated with both Quaternary rhyolitic airfall tephra (volcanic ash) deposits and volcanogenic alluvium, and on mineralisation and thermal activity in hydrothermal fields. After a brief overview of the basaltic volcanoes of Auckland City, our route essentially traverses the Central Volcanic Region by way of a large loop with overnight stops at Rotorua (2 nights), Tokaanu, and Auckland (Fig. 0.1). We have around five stops planned for each day (including lunch), three of these being scientific stops except on Day 4 when we have only one scientific stop because of the need to travel greater distances. Our route takes us progressively towards the locus of the most recently active volcanic centres of the Central Volcanic Region, and so the surficial tephra deposits and buried paleosols become successively younger and generally less weathered: tephras at the Mangawara section (Day 1) span c. 1 Ma; at Tapapa (Day 2), c. 140 ka; at Te Ngae (Day 2), c. 20 ka; and at De Bretts, c. 10 ka, and Wairakei, c. 2 ka (Day 3). Interspersed with these tephra-paleosol sections are stops to examine an allophane-halloysite soil drainage (leaching) sequence on volcanogenic alluvium (Day 1), hydrothermal activity and mineral deposits at Whakarewarewa (Day 2) and Waiotapu (Day 3), and pure ferrihydrite seepage deposits in Hamilton (Day 4). Following introductory and detailed background review material, the tour guide has been arranged on a day-by-day basis and includes an outline of the route and stops, and several pages describing the stratigraphy, mineralogy, chemistry, and pedology of the deposits or features at each of the main stops. We will attempt to point out and describe geological and other features as appropriate during travel periods. Other activities Examples of New Zealand's distinctive fauna and flora, including kiwis and tuataras, will be seen at close quarters at Rainbow Springs (Day 2), where we will also enjoy an agricultural farm show. In Rotorua we will partake in a Maori hangi (steam-cooked feast) and concert including traditional dance forms (hakas) and songs (Day 2). In Tokaanu, hot pools will be available to relax in near the slopes of Mt Tongariro (Day 3). At Waitomo, we will visit the Waitomo Cave and in Hamilton spend a short time at the Waikato Museum of Art and History (Day 4). Finally, the tour will conclude with a farewell dinner in Auckland

    Wavelet multiscale analysis for hedge funds: scaling and strategies

    Get PDF
    The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns. The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the- counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons

    Seizure characterisation using frequency-dependent multivariate dynamics

    Get PDF
    The characterisation of epileptic seizures assists in the design of targeted pharmaceutical seizure prevention techniques and pre-surgical evaluations. In this paper, we expand on recent use of multivariate techniques to study the crosscorrelation dynamics between electroencephalographic (EEG) channels. The Maximum Overlap Discrete Wavelet Transform (MODWT) is applied in order to separate the EEG channels into their underlying frequencies. The dynamics of the cross-correlation matrix between channels, at each frequency, are then analysed in terms of the eigenspectrum. By examination of the eigenspectrum, we show that it is possible to identify frequency dependent changes in the correlation structure between channels which may be indicative of seizure activity. The technique is applied to EEG epileptiform data and the results indicate that the correlation dynamics vary over time and frequency, with larger correlations between channels at high frequencies. Additionally, a redistribution of wavelet energy is found, with increased fractional energy demonstrating the relative importance of high frequencies during seizures. Dynamical changes also occur in both correlation and energy at lower frequencies during seizures, suggesting that monitoring frequency dependent correlation structure can characterise changes in EEG signals during these. Future work will involve the study of other large eigenvalues and inter-frequency correlations to determine additional seizure characteristics

    Continuous Quantum Measurement and the Quantum to Classical Transition

    Get PDF
    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes which affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit. First, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.Comment: 12 pages, 4 figures, Revtex

    Cosmological constraints from galaxy clustering

    Get PDF
    In this manuscript I review the mathematics and physics that underpins recent work using the clustering of galaxies to derive cosmological model constraints. I start by describing the basic concepts, and gradually move on to some of the complexities involved in analysing galaxy redshift surveys, focusing on the 2dF Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky survey (SDSS). Difficulties within such an analysis, particularly dealing with redshift space distortions and galaxy bias are highlighted. I then describe current observations of the CMB fluctuation power spectrum, and consider the importance of measurements of the clustering of galaxies in light of recent experiments. Finally, I provide an example joint analysis of the latest CMB and large-scale structure data, leading to a set of parameter constraints.Comment: 30 pages, 13 figures. Lecture given at Third Aegean Summer School, The invisible universe: Dark matter and Dark energ

    Large-scale periodicity in the distribution of QSO absorption-line systems

    Full text link
    The spatial-temporal distribution of absorption-line systems (ALSs) observed in QSO spectra within the cosmological redshift interval z = 0.0--4.3 is investigated on the base of our updated catalog of absorption systems. We consider so called metallic systems including basically lines of heavy elements. The sample of the data displays regular variations (with amplitudes ~ 15 -- 20%) in the z-distribution of ALSs as well as in the eta-distribution, where eta is a dimensionless line-of-sight comoving distance, relatively to smoother dependences. The eta-distribution reveals the periodicity with period Delta eta = 0.036 +/- 0.002, which corresponds to a spatial characteristic scale (108 +/- 6) h(-1) Mpc or (alternatively) a temporal interval (350 +/- 20) h(-1) Myr for the LambdaCDM cosmological model. We discuss a possibility of a spatial interpretation of the results treating the pattern obtained as a trace of an order imprinted on the galaxy clustering in the early Universe.Comment: AASTeX, 13 pages, with 9 figures, Accepted for publication in Astrophysics & Space Scienc

    GG-Strands

    Get PDF
    A GG-strand is a map g(t,s): R×R→Gg(t,{s}):\,\mathbb{R}\times\mathbb{R}\to G for a Lie group GG that follows from Hamilton's principle for a certain class of GG-invariant Lagrangians. The SO(3)-strand is the GG-strand version of the rigid body equation and it may be regarded physically as a continuous spin chain. Here, SO(3)KSO(3)_K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincar\'e system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian, the SO(3)KSO(3)_K-strand is mapped into a completely integrable generalization of the classical chiral model for the SO(3)-strand. Analogous results are obtained for the Sp(2)Sp(2)-strand. The Sp(2)Sp(2)-strand is the GG-strand version of the Sp(2)Sp(2) Bloch-Iserles ordinary differential equation, whose solutions exhibit dynamical sorting. Numerical solutions show nonlinear interactions of coherent wave-like solutions in both cases. Diff(R){\rm Diff}(\mathbb{R})-strand equations on the diffeomorphism group G=Diff(R)G={\rm Diff}(\mathbb{R}) are also introduced and shown to admit solutions with singular support (e.g., peakons).Comment: 35 pages, 5 figures, 3rd version. To appear in J Nonlin Sc

    Classical approach in quantum physics

    Full text link
    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom recently discovered with the help of Poincareˊ\acute{\mathrm{e}} section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treating as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well. In conclusion, the relation between quantum theory, classical physics and measurement is discussed.Comment: This review paper was rejected from J.Phys.A with referee's comment "The author has made many worthwhile contributions to semiclassical physics, but this article does not meet the standard for a topical review"

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS

    Full text link
    On very large scales, density fluctuations in the Universe are small, suggesting a perturbative model for large-scale clustering of galaxies (or other dark matter tracers), in which the galaxy density is written as a Taylor series in the local mass density, delta, with the unknown coefficients in the series treated as free "bias" parameters. We extend this model to include dependence of the galaxy density on the local values of nabla_i nabla_j phi and nabla_i v_j, where phi is the potential and v is the peculiar velocity. We show that only two new free parameters are needed to model the power spectrum and bispectrum up to 4th order in the initial density perturbations, once symmetry considerations and equivalences between possible terms are accounted for. One of the new parameters is a bias multiplying s_ij s_ji, where s_ij=[nabla_i nabla_j \nabla^-2 - 1/3 delta^K_ij] delta. The other multiplies s_ij t_ji, where t_ij=[nabla_i nabla_j nabla^-2 - 1/3 delta^K_ij](theta-delta), with theta=-(a H dlnD/dlna)^-1 nabla_i v_i. (There are other, observationally equivalent, ways to write the two terms, e.g., using theta-delta instead of s_ij s_ji.) We show how short-range (non-gravitational) non-locality can be included through a controlled series of higher derivative terms, starting with R^2 nabla^2 delta, where R is the scale of non-locality (this term will be a small correction as long as k^2 R^2 is small, where k is the observed wavenumber). We suggest that there will be much more information in future huge redshift surveys in the range of scales where beyond-linear perturbation theory is both necessary and sufficient than in the fully linear regime.Comment: 24 pg., 5 fi
    • 

    corecore