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Abstract

The characterisation of epileptic seizures assists in the design of targeted pharmaceutical seizure prevention techniques
and pre-surgical evaluations. In this paper, we expand on recent use of multivariate techniques to study the cross-
correlation dynamics between electroencephalographic (EEG) channels. The Maximum Overlap Discrete Wavelet
Transform (MODWT) is applied in order to separate the EEG channels into their underlying frequencies. The
dynamics of the cross-correlation matrix between channels, at each frequency, are then analysed in terms of the
eigenspectrum. By examination of the eigenspectrum, we show that it is possible to identify frequency dependent
changes in the correlation structure between channels which may be indicative of seizure activity.

The technique is applied to EEG epileptiform data and the results indicate that the correlation dynamics vary over
time and frequency, with larger correlations between channels at high frequencies. Additionally, a redistribution of
wavelet energy is found, with increased fractional energy demonstrating the relative importance of high frequencies
during seizures. Dynamical changes also occur in both correlation and energy at lower frequencies during seizures,
suggesting that monitoring frequency dependent correlation structure can characterise changes in EEG signals during
these. Future work will involve the study of other large eigenvalues and inter-frequency correlations to determine
additional seizure characteristics.
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1. Introduction

In recent years, the application of the equal-
time correlation matrix to a variety of multivariate
data sets such as financial data [1–4], electroen-
cephalographic (EEG) recordings [5–11], magne-
toencephalographic (MEG) recordings [12] and
others has been studied extensively. The dynamics
of such systems are characterised by a continuously
varying level of synchronisation between different
subsets of the system. The degree of synchronisation
is dependent on the length of time-series studied,

Email addresses: tconlon@computing.dcu.ie (T.

Conlon), hruskin@computing.dcu.ie (H.J. Ruskin),
mcrane@computing.dcu.ie (M. Crane).

the granularity of the data and the amount of noise
in the system, amongst other things.

Equal-time cross-correlation matrices have been
shown to characterise dynamical changes in nonsta-
tionary multivariate time-series, [8]. It was demon-
strated that, as the synchronisation of k individual
time-series within an M−dimensional multivariate
time-series increases, this causes a repulsion between
eigenstates of the correlation matrix, in which k lev-
els participate. Through the use of artificially cre-
ated time-series with pre-defined correlation dynam-
ics, it was found that there exist situations where the
relative change of eigenvalues from the lower edge of
the spectrum is greater than that of the large eigen-
values, implying that the information drawn from
the smaller eigenvalues is more relevant as an in-
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dicator of event activity. An examination of shifts
in the eigenspectrum of the cross-correlation matrix
between epileptic seizure time-series, also revealed
that information about the correlation dynamics is
reflected in both the lower and upper eigenstates.

The application of the equal-time correlation ma-
trix to EEG seizure time-series was used to study
temporal dynamics for a large sample of focal onset
epileptic seizures, [10]. It was shown that the zero-
lag correlations between multichannel EEG signals
tend to decrease during the first half of a seizure and
increase gradually before the seizure ends. This work
was further extended to the case of Status Epilepti-

cus, where the equal-time cross-correlation matrix
was used to assess neuronal synchronisation prior to
seizure termination, [11].

It was demonstrated, for particular examples,
that information about cross-correlations can be
found in the random matrix theory (RMT) de-
fined bulk of eigenvalues and that the information
extracted at the lower edge is statistically more sig-
nificant than that extracted from the larger eigen-
values, [9]. The method was applied to multichan-
nel EEG data, where the dynamics of the smallest
eigenvalues were shown to be more sensitive to the
detection of subtle changes in the brain dynamics
than those of the largest eigenvalues.

The use of wavelet techniques in the study
of EEG signals is widespread, allowing a time-
frequency decomposition of these non-stationary
signals. Wavelets, [13–16], were used to determine
localisation of transient signals (spikes) during ic-
tal periods, vital in preoperative evaluation of the
foci and propagation of ictal events. Furthermore, a
wavelet-based similarity method across frequencies
was described, using ideas from nonlinear dynamics
to predict epileptic seizures, [17].

Various authors have attempted to measure the
interdependencies between different regions of the
brain. A number of these techniques were compared,
with their relative performance shown to be depen-
dent on the form of the underlying signals, [6,7]. In
the case of MEG signals, a limited study consisting
of three patients was performed, using wavelets to
determine cross-correlations over different frequen-
cies and calculate the time lag between different
brain regions, [18]. The application of the coherence

function and cross-correlation between different fre-
quency bands, defined by a continuous filter bank
was also used to explore the time-frequency depen-
dence of epileptic seizure data, [19].

In this paper, we seek to expand these techniques

through application of time-frequency decomposi-
tion to the multivariate analysis of EEG channel in-
terdependency. Data considered are from a number
of patients suffering from focal, generalised or sec-

ondary generalised epileptic seizures. The frequency
dependence of this multivariate technique adds an
additional dimension to previous studies, with dis-
tinct behaviour of the eigenvalue spectrum and as-
sociated correlation between channels demonstrated
across different frequencies. The paper is organised
as follows. Methods are reviewed in Section 2. In
Section 3 we describe the data studied, while in Sec-
tion 4 we summarise the results obtained and dis-
cuss their importance.

2. Methods

2.1. Correlation Dynamics

Equal-time cross-correlation matrices between
EEG time-series are calculated using a sliding time
window where the number of channels,N , is smaller
than the window size T . Given EEG time-series
Si (t), i = 1, . . . , N , we normalise these within each
window as follows:

si (t) =
Si (t) − Ŝi

σi
(1)

with σi the standard deviation and Ŝi the time av-
erage of Si over a time window of size T , for channel
i = 1, . . . , N .

The equal-time cross-correlation matrix is ex-
pressed in terms of si (t),

Cij ≡ 〈si (t) sj (t)〉 . (2)

The elements of Cij are limited to the domain −1 ≤
Cij ≤ 1, where Cij = 1 defines perfect positive cor-
relation, Cij = −1 corresponds to perfect negative
correlation and Cij = 0 to no correlation, [1,2]. The
correlation matrix can be expressed in matrix nota-
tion as

C =
1

T
SSτ (3)

where S is an N × T matrix with elements sit.
The eigenvalues λi and eigenvectors v̂i of the cor-

relation matrix C are found from the following,

Cv̂i = λiv̂i. (4)

The eigenvalues are then ordered by size, such that
λ1 ≤ λ2 ≤ . . . ≤ λN . The trace of a matrix, ie. the
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sum of the diagonal elements, must always remain
constant under linear transformation. Thus, the sum
of the eigenvalues must always equal the trace of
the original correlation matrix, [26]. Hence, if some
eigenvalues increase then others must decrease, to
compensate, and vice versa.

There are two limiting cases for the distribution
of the eigenvalues [8,10]. When all of the time-series
are perfectly correlated, Ci ≈ 1, the largest eigen-
value is maximised with a value equal toN , while all
other eigenvalues take value zero. When each of the
time-series consists of random numbers with aver-
age correlation Ci ≈ 0, the corresponding eigenval-
ues are distributed around 1, (where any deviation
is due to spurious random correlations).

For cases between these two extremes, we can use
the eigenvalue spectrum, calculated using a moving
window, to detect changes in the correlation struc-
ture. If all channels have an average cross-correlation
ρ0, then the largest eigenvalue is of order (N−1)ρ0+
1 where N is the number of channels. As this aver-
age or global correlation between channels increases,
the largest eigenvalue increases (to a maximum N),
with a corresponding decrease in the small eigenval-
ues (eigenvalue repulsion). Other cases, where cor-
relation structure was more intricate have been de-
scribed, [8], but in this paper we concentrate on the
global correlation between channels.

As indicated, the small eigenvalues decrease when
the global correlation between channels increases,
resulting in a large disparity between the relative
size of the small and large eigenvalues. To allow the
comparison of eigenvalues from both ends of the
spectrum, we normalise each eigenvalue in time us-
ing

λ̃i(t) =

(
λi(t) − λ̄

)

σλ
(5)

where λ̄ and σλ are the mean and standard devi-
ation of the eigenvalues over a particular reference
period, [10]. This normalisation allows us to visually
compare eigenvalues at both ends of the spectrum,
even if their magnitudes are significantly different.
The reference period used to calculate mean and
standard deviation of the eigenvalue spectrum can
be chosen to be a low volatility sub-period, (which
helps to enhance the visibility of high volatility pe-
riods), or the full-time period studied. By normal-
ising the eigenvalues over time, it becomes possible
to identify epileptiform events, even using the small
eigenvalues.

2.2. Wavelet Multiscale Analysis

Wavelets provide an efficient means of studying
multiresolution properties, as they can be used to de-
compose a signal into different time horizons or fre-
quency components. The discrete wavelet transform
(DWT), in particular, allows the decomposition of
a signal into components of different frequency, [20–
22]. There are two basic wavelet functions, the fa-
ther wavelet φ and the mother wavelet ψ. The for-
mal definitions of the father and mother wavelets
are the functions:

φj,k (t) = 2
j

2φ
(
2jt− k

)
(6)

ψj,k (t) = 2
j

2ψ
(
2jt− k

)
(7)

where j = 1, . . . J in a J-level decomposition. The
father wavelet integrates to 1 and reconstructs the
longest time-scale component of the series, whereas
the mother wavelet integrates to 0 and is used to
describe the deviations from the trend. The wavelet
representation of a discrete signal f(t) in L2(R) is
given by:

f(t) =
∑

k

sJ,kφJ,k(t) +
∑

k

dJ,kφJ,k(t) + . . .

+
∑

k

d1,kφ1,k(t) (8)

where J is the number of multiresolution levels (or
scales) and k ranges from 1 to the number of co-
efficients in the specified level. The coefficients sJ,k
and dJ,k are the smooth and detail component coef-
ficients respectively and are given by

sJ,k =

∫
φJ,kf(t)dt (9)

dj,k =

∫
ψj,kf(t)dt (j = 1, . . . J) (10)

Each of the coefficient sets SJ , dJ , dJ−1, . . . d1 is
called a crystal.

2.2.1. MODWT

The maximum overlap discrete wavelet transform
(MODWT) is a linear filter that transforms a se-
ries into coefficients related to variations over a set
of scale, [22,23]. Like the DWT it produces a set of
time-dependent wavelet and scaling coefficients with
basis vectors associated with a location t and a unit-
less scale τj = 2j−1 for each decomposition level j =
1, . . . , J0 . The MODWT, unlike the DWT, has a
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high level of redundancy, however, and is nonorthog-
onal. It retains downsampled 1 values at each level
of the decomposition that would be discarded by the
DWT. The MODWT can also handle any sample
size N, whereas the DWT restricts the sample size to
a multiple of 2j . Here, we apply the MODWT as it
helps reduce the errors associated with the calcula-
tion of wavelet correlation at different scales, (due to
the availability of greater amounts of data at longer
scales).

Decomposing a signal using the MODWT to J

levels theoretically involves the application of J
pairs of filters. The filtering operation at the jth

level consists of applying a rescaled father wavelet
to yield a set of detail coefficients

D̃j,t =

Lj−1∑

l=0

ψ̃j,lft−l (11)

and a rescaled mother wavelet to yield a set of scaling

coefficients

S̃j,t =

Lj−1∑

l=0

φ̃j,lft−l (12)

for all times t = . . . ,−1, 0, 1, . . ., where f is the func-
tion to be decomposed, [22]. The rescaled mother,

ψ̃j,l =
ψj,l

2j , and father, φ̃j,t =
φj,l

2j , wavelets for the
jth level are a set of scale-dependent localized dif-
ferencing and averaging operators and can be re-
garded as rescaled versions of the originals. The jth

level equivalent filter coefficients have a width Lj =
(2j−1)(L−1)+1, where L is the width of the j = 1
base filter. In practice the filters for j > 1 are not
explicitly constructed because the detail and scal-
ing coefficients can be calculated, using an algorithm
that involves the j = 1 filters operating recurrently
on the jth level scaling coefficients, to generate the
j + 1 level scaling and detail coefficients [22].

The MODWT is an energy conserving decompo-
sition, [22]:

‖f‖
2

=

J∑

j=1

∥∥∥D̃j

∥∥∥
2

+
∥∥∥S̃J

∥∥∥
2

(13)

This decomposition allows the measurement of the
contribution to the energy due to changes at scale

1 Downsampling or decimation of the wavelet coefficients
retains half of the number of coefficients that were retained at

the previous scale. Downsampling is applied in the Discrete
Wavelet Transform

2j−1. A fractional energy, Ẽj , associated with each
scale can be calculated using

Ẽj =
Ej

Etot
, with Etot =

J∑

j=1

Ej . (14)

for scales j = 1, . . . , J .

2.2.2. Wavelet Variance

The wavelet variance ν2
f (τj) is defined as the ex-

pected value of D̃2
j,t if we consider only the non-

boundary coefficients 2 . An unbiased estimator of
the wavelet variance is formed by removing all co-
efficients that are affected by boundary conditions
and given by:

ν2
f (τj) =

1

Mj

N−1∑

t=Lj−1

D̃2
j,t (15)

where Mj = N − Lj + 1 is the number of non-
boundary coefficients at the jth level, [22]. The
wavelet variance decomposes the variance of a pro-
cess on a scale-by-scale basis (at increasingly higher
resolutions of the signal) and allows us to explore
how a signal behaves over different time horizons.

2.2.3. Wavelet Covariance and Correlation

The wavelet covariance between functions f(t)
and g(t) is similarly defined to be the covariance of
the wavelet coefficients at a given scale. The unbi-

ased estimator of the wavelet covariance at the jth

scale is given by

νfg(τj) =
1

Mj

N−1∑

t=Lj−1

D̃
f(t)
j,t D̃

g(t)
j,t (16)

where all the wavelet coefficients affected by the
boundary are removed, [22], and Mj = N −Lj + 1.

The MODWT estimate of the wavelet cross-
correlation between functions f(t) and g(t) may
be calculated using the wavelet covariance and the
square root of the wavelet variance of the functions
at each scale j. The MODWT estimator, [23], of
the wavelet correlation is given by:

ρfg(τj) =
νfg(τj)

νf (τj)νg(τj)
(17)

2 The MODWT treats the time-series as if it were periodic
using “circular boundary conditions”. There are Lj wavelet

and scaling coefficients that are influenced by the extension,
which are referred to as the boundary coefficients.
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where νfg(τj) is the covariance between f(t) and
g(t) at scale j, νf (τj) is the variance of f(t) at scale
j and νg(τj) is the variance of g(t) at scale j.

2.3. Defining Seizure Onsets and Endings

Following [10], we attempted to isolate seizure be-
ginning and end in a reproducible way. First, the ab-

solute slope, Si(t) =
∣∣∣∆EEGi(t)

∆t

∣∣∣, was computed over

each channel i. The slope was normalised, S̃i(t) =
Si(t)
σi

, with σi the standard deviation of the signal
over a reference period containing no seizure activ-
ity. S̃i(t) was then smoothed using a moving aver-
age over a time window of 5 seconds. Epiletiform

activity was defined by finding a slope greater then
2.5 standard deviations from the mean, correspond-
ing to periods of extreme neuronal activity, [10]. By
calculating the number of EEG channels displaying
epileptiform activity, the time of seizure onset was
defined. For the following analysis the number of
channels needed to signify seizure activity was set to
5, allowing us to isolate periods containing epileptic
events.

3. Data

In this study, EEG signals from eight patients of
different ages (28−78), determined by a neurologist
to be suffering from focal, generalised or secondary
generalised seizures were examined. The data was
obtained from the Australian EEG database, [24],
and all signals were recorded using standard interna-
tional system 10−20 electrode placements. The sam-
pling rate for the data was 167Hz, with 23 monopo-
lar channels recorded, (all electrodes have a common
reference). The database contains patient details in-
cluding a history, technician’s comments, medica-
tion and a full EEG report by a neurologist. The
clinical interpretation from the neurologist was used
to comparatively classify the seizures. In this analy-
sis only bipolar derivations, (18 bipolar derivations
or channels are examined below), between nearest-
neighbour channels were used, [25], as the use of
monopolar signals might result in the introduction
of unwanted correlations into the system.

4. Results

For the present study, we selected the least asym-
metric (LA) wavelet, (known as the Symmlet, [20]),

which exhibits near symmetry about the filter mid-
point. LA filters are defined in even widths and the
optimal filter width is dependent on the character-
istics of the signal and the length of the data series.
The filter width chosen for this study was the LA8,
(where 8 refers to the width of the scaling function),
since this enables accurate calculation of wavelet
correlations to the 5th scale, (given the length of
data series available), while still containing enough
detail to capture subtle changes in the signal. Al-
though the MODWT can accommodate any level,
J0, the largest level is chosen, in practise, so as to
prevent decomposition at scales longer than the to-
tal length of the data series, hence the choice of the
5th scale, (Section 2 and [22]).

4.1. Single Patient Analysis

We analyse the equal-time cross-correlation dy-
namics between EEG channels using a sliding win-
dow of length 5s, (chosen so that the signal would
be close to stationary during each window). First,
the MODWT of each EEG channel was calculated
within each window and the correlation matrix be-
tween channels at each scale found, (Eqn. 17). The
eigenvalues of the correlation matrix in each win-
dow were determined, (Eqn. 4), and eigenvalue time-
series were normalised in time, (Eqn. 5).

The seizure definition, (Section 2.3), and eigen-
value dynamics for a 30 year old patient suffering
from focal epilepsy with possible secondary general-
isation are shown, Fig. 1(a). The seizure definition
reveals 3 main periods that display epileptiform ac-
tivity. An initial examination of the eigenvalue dy-
namics over each of the wavelet scales (correspond-
ing to frequencies from 4Hz to 60Hz), reveals that
the eigenvalue repulsion found using the equal-time
cross-correlation matrix on unfiltered data, [10,11],
is also repeated across the different frequencies.
Fig. 1(b-f) shows the dynamics of both the largest
eigenvalue and that of the average across the 15
smallest eigenvalues. The dynamics of the smallest
eigenvalues complement those of the largest eigen-
value, (since the trace of the correlation matrix
must remain constant under linear transforma-
tion), [8–11], across all scales. As described earlier,
the largest eigenvalue increases when the average
correlation between channels increases, with a cor-
responding decrease in the smallest eigenvalues.

In Fig. 1, we see that the largest eigenvalue of the
cross-correlation matrix calculated at the highest

5



frequency (60Hz) increases during epileptiform ac-
tivity. However, as we move to lower frequencies, the
largest eigenvalue tends to decrease during epilepti-
form activity. In this example, the decrease is par-
ticularly evident at levels 3 and 4 (corresponding
to 15Hz and 7Hz respectively). The increase in the
largest eigenvalue at the highest frequency corre-
sponds to an increase in the average, or global, sys-
tem correlation at this frequency, with the opposite
occurring at lower frequencies, (Section 2.1).

The wavelet energy, (Eqn. 14), measured in a slid-
ing window of 5s for each of the wavelet scales,
is shown in Fig. 2 for the same patient as previ-
ous, (Fig. 1). The energy at the highest frequencies
is negligible, except during periods corresponding to

epileptiform activity, when it increases greatly, cor-
responding to more than 60% of the total system en-
ergy. During non-epileptiform activity, the energy at
low frequencies makes up most of the system energy.
However, during epileptiform activity the energy at
low frequencies drops to negligible levels compen-
sating for the increase at high frequencies implying
that most of the system energy is involved in high
frequency events such as spikes.

These preliminary results seem to indicate in-
creased levels of correlation between EEG channels
at the highest frequencies during epileptiform ac-
tivity, with corresponding increases in energy. In
contrast, the average system correlation at low
frequencies, (measured against the dynamical be-
haviour of the largest eigenvalue), decreases with
corresponding decrease in energy. This analysis in-
dicates that high frequencies are of more importance
during epileptiform activity, (since the associated
energy is higher), and hence the correlation struc-
ture at high frequencies may be of more relevance
in the characterisation of seizures.

4.2. Multiple Patient Analysis

In order to investigate robustness of the initial re-
sults further, we examined the eigenvalue dynamics
and associated energy for all eight patients described
earlier, Section 3, with the individual results shown
in Table A.1. For each patient we measured the av-
erage eigenvalue size and the associated energy dur-
ing active periods, (when the largest eigenvalue, at
the highest frequency, is greater than 1.5 standard
deviations units (SDU) from the mean. This corre-
sponds to the 6.7% largest readings), as well as dur-
ing normal periods, (when the largest eigenvalue, at

the highest frequency, is between −1.5 and 1.5 SDU
from the mean). The average eigenvalue size and en-
ergy are measured across scales 1−5, as before. The
results for Patient 1 correspond to those shown in
Fig. 1.

Fig. 3 shows the distribution of the largest eigen-
value for all patients across each scale. For the high-
est frequencies, the average eigenvalue is raised con-
siderably during active, when compared to normal
periods. Using a Wilcoxon signed-rank test across
all samples at each scale, the probability of zero me-
dian difference between eigenvalue pairs is less than
0.05 at these frequencies. The raised largest eigen-
values corresponds to an increase in the global or av-
erage correlation at these high frequencies. For the
lower frequencies, there is a definite overlap between
the eigenvalues but with a lower median and much
larger variance during the active period.

The energy at each of the scales is shown, Fig. 4,
with an obvious increase in energy at the highest
frequency during active periods (Wilcoxon signed-
rank test, Probability< 0.05 of distributions with
the same median). At the next frequency, 30Hz,
the energy is also raised but the behaviour is not as
marked. For lower frequencies, the energy decreases
during active periods to compensate for the increase
at higher frequencies. In particular, for scales 3, the
reduction is significant with P< 0.05, (Wilcoxon
signed-rank test). This behaviour indicates that the
high frequency behaviour is of greatest importance
during active periods, with corresponding correla-
tion increase.

5. Discussion

By analysis of the eigenvalue spectrum of EEG
epileptiform signals, filtered using the wavelet
transform, we were able to examine changes in the
eigenspectrum of the cross-correlation matrix be-
tween channels. The largest eigenvalue corresponds
to the average correlation between all channels and
is orthogonal to the other eigenvalues. Previously,
a number of studies examined the univariate time-
frequency behaviour using a number of different
linear and non-linear techniques, [13–16]. However,
this single channel approach ignores the interac-
tions between neurons involved in brain activity,
particularly prominent during seizures.

Various bivariate methods to examine dynamic
changes in these interactions have been suggested.
The linear cross-correlation was measured at differ-
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Fig. 3. Largest eigenvalue for all patients across first 5 scales.

The red line shows the median value, while the quartiles are
shown in blue and outliers as ‘whiskers’. The P value is the
Wilcoxon signed-rank probability (see text).
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ent frequencies, for the channels with the maximum
power at high frequencies, [30]. In contrast to the
work above, the correlation between these channels
was shown to decrease during the seizure. This,
however, may be due to the bivariate approach
used, which only captured the correlation between
particular channels reflecting specific brain regions.
This activity may possibly be reflected in the sec-
ond or third largest eigenvalue of the multivariate
technique, where correlations orthogonal to those
in the largest eigenvalue are found, (corresponding
to correlations between certain subsystems, [8]).
The linear cross-correlation for two band-filtered
channels were examined for different time lags, with
a strong relationship found for a frequency band
around 30Hz, [19].

The bivariate methods, described above, concen-
trated on correlations between a small number of
channels, chosen specifically for the study. Using
multivariate EEG data, changes in the global cor-
relation structure were shown to be visible at both
ends of the eigenvalue spectrum, [8]. For a limited
study of a single seizure, a sudden system-wide
change from a relatively uncorrelated to highly cor-
related state was found to take place, reflected in
an increase in the largest eigenvalue. Analysis of
the changes in the eigenvalue spectrum for a large
number of seizures showed a generic change in the
correlation structure during focal onset seizures,
[10]. The seizure recordings in this data consisted of
58 − 94 channels and the changes in the eigenvalue
spectrum were shown to occur for a number of the
largest eigenvalues. Contrary to behaviour found
previously, [8], these eigenvalues were shown to
decrease during the first half of the seizure, indicat-
ing de-correlation, with an increase in correlation
found before seizure end. It was suggested that this
increase in correlation may be related to seizure
termination.

Time-frequency decompositions of EEG signals
have been studied for many years, [27]. In this
initial work, we extend the previous multivariate
techniques, [8,10], by examining changes in the
eigenvalues of the correlation matrix between EEG
time-series across various frequencies. The results
for low frequencies were similar to those found by
[10], (see Fig. 1), with a decrease in global corre-
lation at seizure onset, reflected by the decrease in
the largest eigenvalue. However, at higher frequen-
cies (Fig. 1(b)), we found an increase in the largest
eigenvalue at seizure onset, corresponding to an
increase in global correlation. Additional analysis,
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across a number of seizures, confirmed that when
eigenvalues at the highest frequencies increased,
small variation only occured in the correlation at
lower frequencies. The limited number of channels
available for study, meant that the effects of the
global or average correlation were only found in the
largest eigenvalue, in contrast to the work by [10].

Previous studies have used wavelet energy in the
prediction of seizures, [28]. In our analysis, we ex-
amine the fractional energy of each of the frequen-
cies, in order to determine the significance of each
over time. This complements the multivariate analy-
sis described, by emphasising the importance of the
highest frequencies during active periods. Addition-
ally, it develops the previous work, [8,10], by includ-
ing frequency insight on the correlation structure
over time. By focusing on particular frequencies, a
simple multivariate technique such as that described
may be applicable to seizure prevention. Addition-
ally, as very high frequency oscillations have been
found during seizures, [29], a further study of corre-
lation dynamics at this scale is indicated.

6. Conclusions

Through the use of wavelet multiscaling, we ex-
pand the previous multivariate analysis, [8–11], to
explore the frequency dependence of the correlation
dynamics between EEG channels for patients suffer-
ing with different forms of epilepsy. The eigenvalue
spectrum of EEG epileptiform signals were filtered
using the wavelet transform. Initial analysis, (Sec-
tion 4.1), consisted of EEG time-series from a pa-
tient with focal epilepsy, with results revealing an in-
crease in the largest eigenvalue during epileptiform
activity, (corresponding to an increase in correla-
tion between channels), at the highest frequency. In
contrast, correlation at lower frequencies decreased
during epileptiform activity. Wavelet energy decom-
position revealed an increase in energy at higher
frequencies during epileptiform activity, with a cor-
responding decrease at lower frequencies. This im-
plies that high frequency activity is more significant

during epileptiform activity and hence correlation
dynamics at these frequencies assume greater rela-
tive importance. The correlation activity at lower
frequencies was larger when abnormal activity was
low, with higher levels of associated wavelet energy.
This suggests that low-frequencies assume greater
importance during normal activity.

This approach was then applied to a variety of

EEG signals, (Section 4.2), for different types of
epileptic activity. Correlation dynamics were found

to be dependent upon the frequency examined, with

the correlation structure acting as a barometer of

EEG activity. Clearly, the data available is limited,
but the evidence of clear crossover in eigenvalue en-
ergy does suggest that monitoring correlation struc-
ture in EEG signals at different frequencies can pro-
vide a more subtle gauge of incipient imbalance at
pre-seizure stage, than is found using unfiltered sig-
nals alone.

A more detailed analysis of eigenvalue dynamics
at different frequencies during seizures is certainly
needed. The work by [10] finds a decrease in over-
all correlation after seizure start, followed by an in-
crease in correlation as the seizure ends. Our ini-
tial results suggest similar behaviour at lower fre-
quencies, while the opposite occurs at higher fre-
quencies. This suggests that the examination of cor-
relation dynamics across various frequencies prior
to seizure beginning may reveal pre-seizure char-
acteristics, which can be used to calibrate seizure
prevention strategies. An in-depth study on differ-
ent seizure types may reveal further distinct corre-
lation structures specific to the seizure type. More-
over, analysis of inter-frequency correlations may
shed light on the lead-lag relationship across differ-
ent frequencies, while subsidiary eigenvalue investi-
gation is also worthwhile.
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Appendix A

Patient No. Scale: 1 2 3 4 5 Patient No. Scale: 1 2 3 4 5

Scale 1 Active 2.20 0.23 -1.30 -0.71 -0.33 Scale 1 Active 2.26 1.20 0.18 -0.31 -0.41

Energy 0.38 0.18 0.15 0.17 0.12 Energy 0.16 0.16 0.24 0.27 0.17
1

Scale 1 Normal -0.12 0.01 0.09 0.05 0.03
5

Scale 1 Normal -0.24 -0.13 -0.02 0.03 0.04

Energy 0.09 0.09 0.21 0.36 0.25 Energy 0.17 0.17 0.23 0.26 0.17

Scale 1 Active 2.54 1.65 -0.56 0.13 0.52 Scale 1 Active 2.43 2.11 -0.26 0.65 0.11

Energy 0.39 0.26 0.15 0.11 0.09 Energy 0.21 0.21 0.16 0.20 0.22
2

Scale 1 Normal -0.25 -0.16 0.06 -0.02 -0.05
6

Scale 1 Normal -0.14 -0.13 0.03 -0.04 0.00

Energy 0.23 0.18 0.22 0.19 0.12 Energy 0.12 0.18 0.21 0.27 0.22

Scale 1 Active 2.50 2.09 0.58 0.37 1.07 Scale 1 Active 1.67 0.75 0.06 -0.03 -0.18

Energy 0.32 0.27 0.16 0.13 0.12 Energy 0.16 0.15 0.25 0.35 0.09
3

Scale 1 Normal -0.10 -0.08 0.00 0.00 -0.05
7

Scale 1 Normal 0.21 0.17 0.13 0.04 -0.06

Energy 0.23 0.23 0.19 0.23 0.12 Energy 0.15 0.14 0.27 0.32 0.12

Scale 1 Active 1.72 1.78 -0.24 -0.44 -0.11 Scale 1 Active 1.76 0.40 0.20 -0.85 -0.65

Energy 0.42 0.20 0.16 0.13 0.09 Energy 0.21 0.10 0.13 0.35 0.21
4

Scale 1 Normal -0.12 -0.12 0.02 0.03 0.01
8

Scale 1 Normal 0.08 -0.04 -0.03 0.04 0.02

Energy 0.21 0.15 0.26 0.24 0.14 Energy 0.17 0.12 0.14 0.36 0.21

Table A.1
Seizure Analysis: Row 1 shows average size of λmax when λmax > 1.5 at Scale 1, and row 2 the associated energy at each
scale. Row 3 shows average eigenvalue at each level when −1.5 < λmax < 1.5 and row 4 the associated Energy.
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