1,189 research outputs found

    A hybrid pulse transformer with permanent magnets

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.ArticleIEEE TRANSACTIONS ON MAGNETICS. 41(10): 3982-3984 (2005)journal articl

    Ac Susceptibility and Static Magnetization Measurements of CeRu2_2Si2_2 at Small Magnetic Fields and Ultra Low Temperatures

    Get PDF
    The magnetic properties of CeRu2_2Si2_2 at microkelvin temperatures (down to 170 μ\muK) and ultra small magnetic fields (0.02∼6.210.02\sim6.21 mT) are investigated experimentally for the first time. The simultaneously measured ac susceptibility and static magnetization show neither evidence of the magnetic ordering, superconductivity down to the lowest temperatures nor conventional Landau Fermi-Liquid behavior. The results imply the magnetic transition temperature in undoped CeRu2_2Si2_2 is very close to absolute 0 K. The possibility for proximity of CeRu2_2Si2_2 to the quantum critical point without any doping is discussed.Comment: 4 pages, 3 figures; accepted for publication in Phys. Rev. B (Rapid Communication) and scheduled issue on 1st of May 200

    Suzaku Observations of M82 X-1 : Detection of a Curved Hard X-ray Spectrum

    Full text link
    A report is presented on Suzaku observations of the ultra-luminous X-ray source X-1 in the starburst galaxy M82, made three time in 2005 October for an exposure of ~ 30 ks each. The XIS signals from a region of radius 3 around the nucleus defined a 2-10 keV flux of 2.1 x 10^-11 erg s-1 cm-2 attributable to point sources. The 3.2-10 keV spectrum was slightly more convex than a power-law with a photon index of 1.7. In all observations, the HXD also detected signals from M82 up to ~ 20 keV, at a 12-20 keV flux of 4.4 x 10^-12 erg s-1 cm-2 . The HXD spectrum was steeper than that of the XIS. The XIS and HXD spectra can be jointly reproduced by a cutoff power-law model, or similar curved models. Of the detected wide-band signals, 1/3 to 2/3 are attributable to X-1, while the remainder to other discrete sources in M82. Regardless of the modeling of these contaminants, the spectrum attributable to X-1 is more curved than a power-law, with a bolometric luminosity of (1.5 -3) x 10 ^40 erg s-1. These results are interpreted as Comptonized emission from a black hole of 100-200 solar masses, radiating roughly at the Eddington luminosity.Comment: 19 pages, 9 figures, accepted in Publications of the Astronomical Society of Japa

    Discovery of Molecular Loop 3 in the Galactic Center: Evidence for a Positive-Velocity Magnetically Floated Loop towards L=355∘−359∘L=355^\circ-359^\circ

    Full text link
    We have discovered a molecular dome-like feature towards 355∘≤l≤359∘355^{\circ} \leq l \leq 359^{\circ} and 0∘≤b≤2∘0^{\circ} \leq b \leq 2^{\circ}. The large velocity dispersions of 50--100 km s−1^{-1} of this feature are much larger than those in the Galactic disk and indicate that the feature is located in the Galactic center, probably within ∼1\sim1 kpc of Sgr A∗^{*}. The distribution has a projected length of ∼600\sim600 pc and height of ∼300\sim300 pc from the Galactic disk and shows a large-scale monotonic velocity gradient of ∼130\sim130 km s −1^{-1} per ∼600\sim600 pc. The feature is also associated with HI gas having a more continuous spatial and velocity distribution than that of 12^{12}CO. We interpret the feature as a magnetically floated loop similar to loops 1 and 2 and name it "loop 3". Loop 3 is similar to loops 1 and 2 in its height and length but is different from loops 1 and 2 in that the inner part of loop 3 is filled with molecular emission. We have identified two foot points at the both ends of loop 3. HI, 12^{12}CO and 13^{13}CO datasets were used to estimate the total mass and kinetic energy of loop 3 to be \sim3.0 \times 10^{6} \Mo and ∼1.7×1052\sim1.7 \times 10^{52} ergs. The huge size, velocity dispersions and energy are consistent with the magnetic origin the Parker instability as in case of loops 1 and 2 but is difficult to be explained by multiple stellar explosions. We argue that loop 3 is in an earlier evolutionary phase than loops 1 and 2 based on the inner-filled morphology and the relative weakness of the foot points. This discovery indicates that the western part of the nuclear gas disk of ∼1\sim1 kpc radius is dominated by the three well-developed magnetically floated loops and suggests that the dynamics of the nuclear gas disk is strongly affected by the magnetic instabilities.Comment: 30 pages, 10 figures. High resolution figures are available at http://www.a.phys.nagoya-u.ac.jp/~motosuji/fujishita09_figs

    A Detailed Observational Study of Molecular Loops 1 and 2 in the Galactic Center

    Full text link
    Fukui et al. (2006) discovered two huge molecular loops in the Galactic center located in (l, b) ~ (355 deg-359 deg, 0 deg-2 deg) in a large velocity range of -180-40 km s^-1. Following the discovery, we present detailed observational properties of the two loops based on NANTEN 12CO(J=1-0) and 13CO(J=1-0) datasets at 10 pc resolution including a complete set of velocity channel distributions and comparisons with HI and dust emissions as well as with the other broad molecular features. We find new features on smaller scales in the loops including helical distributions in the loop tops and vertical spurs. The loops have counterparts of the HI gas indicating that the loops include atomic gas. The IRAS far infrared emission is also associated with the loops and was used to derive an X-factor of 0.7(+/-0.1){\times}10^20 cm^-2 (K km s^-1)^-1 to convert the 12CO intensity into the total molecular hydrogen column density. From the 12CO, 13CO, H I and dust datasets we estimated the total mass of loops 1 and 2 to be ~1.4 {\times} 106 Msun and ~1.9 {\times} 10^6 Msun, respectively, where the H I mass corresponds to ~10-20% of the total mass and the total kinetic energy of the two loops to be ~10^52 ergs. An analysis of the kinematics of the loops yields that the loops are rotating at ~47 km s-1 and expanding at ~141 km s^-1 at a radius of 670 pc from the center. Fukui et al. (2006) presented a model that the loops are created by the magnetic flotation due to the Parker instability with an estimated magnetic field strength of ~150 {\mu}G. We present comparisons with the recent numerical simulations of the magnetized nuclear disk by Machida et al. (2009) and Takahashi et al. (2009) and show that the theoretical results are in good agreements with the observations. The helical distributions also suggest that some magnetic instability plays a role similarly to the solar helical features.Comment: 40 pages, 22 figures, submitted to publication in PAS

    Discovery of Spectral Transitions from Two Ultra-Luminous Compact X-Ray Sources in Ic342

    Full text link
    Two {\it ASCA} observations were made of two ultra-luminous compact X-ray sources (ULXs), Source 1 and Source 2, in the spiral galaxy IC 342. In the 1993 observation, Source 2 showed a 0.5--10 keV luminosity of 6×10396 \times 10^{39} ergs s−1^{-1} (assuming a distance of 4.0 Mpc), and a hard power-law spectrum of photon index ∼1.4\sim 1.4. As already reported, Source 1 was ∼3\sim 3 times brighter on that occasion, and exhibited a soft spectrum represented by a multi-color disk model of inner-disk temperature ∼1.8 \sim 1.8 keV. The second observation made in February 2000 revealed that Source 1 had made a transition into a hard spectral state, while Source 2 into a soft spectral state. The ULXs are therefore inferred to exhibit two distinct spectral states, and sometimes make transitions between them. These results significantly reinforce the scenario which describes ULXs as mass-accreting black holes.Comment: 11 pages, 3 figures; acceoted for ApJ

    Pilot VLBI Survey of SiO v=3 J=1--0 Maser Emission around Evolved Stars

    Get PDF
    In this Letter, we report detections of SiO v=3 J=1--0 maser emission in very long baseline interferometric (VLBI) observations towards 4 out of 12 long-period variable stars: WX Psc, R Leo, W Hya, and T Cep. The detections towards WX Psc and T Cep are new ones. We also present successful astrometric observations of SiO v=2 and v=3 J=1--0 maser emissions associated with two stars: WX Psc and W Hya and their position-reference continuum sources: J010746.0+131205 and J135146.8-291218 with the VLBI Exploration of Radio Astrometry (VERA). The relative coordinates of the position-reference continuum source and SiO v=3 maser spots were measured with respect to those of an SiO v=2 maser spot adopted as fringe-phase reference. Thus the faint continuum sources were inversely phase-referenced to the bright maser sources. It implies possible registration of multiple SiO maser line maps onto a common coordinate system with 10 microarcsecond-level accuracy.Comment: 5 Pages, 3 figures, Fig.3 and Tab. 2 were corrected; Publications of the Astronomical Society of Japan, Vol. 64, No. 6 issued on 2012 December 2

    High Excitation Molecular Gas in the Galactic Center Loops; 12CO(J =2-1 and J =3-2) Observations

    Full text link
    We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distributions of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.Comment: 59 pages, accepted to PAS
    • …
    corecore