195 research outputs found

    Monitoring of total positive end-expiratory pressure during mechanical ventilation by artificial neural networks

    Get PDF
    Ventilation treatment of acute lung injury (ALI) requires the application of positive airway pressure at the end of expiration (PEEPapp) to avoid lung collapse. However, the total pressure exerted on the alveolar walls (PEEPtot) is the sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden component. To measure PEEPtot, ventilation must be discontinued with an end-expiratory hold maneuver (EEHM). We hypothesized that artificial neural networks (ANN) could estimate the PEEPtot from flow and pressure tracings during ongoing mechanical ventilation. Ten pigs were mechanically ventilated, and the time constant of their respiratory system (τRS) was measured. We shortened their expiratory time (TE) according to multiples of τRS, obtaining different respiratory patterns (Rpat). Pressure (PAW) and flow (V′AW) at the airway opening during ongoing mechanical ventilation were simultaneously recorded, with and without the addition of external resistance. The last breath of each Rpat included an EEHM, which was used to compute the reference PEEPtot. The entire protocol was repeated after the induction of ALI with i.v. injection of oleic acid, and 382 tracings were obtained. The ANN had to extract the PEEPtot, from the tracings without an EEHM. ANN agreement with reference PEEPtot was assessed with the Bland–Altman method. Bland Altman analysis of estimation error by ANN showed −0.40 ± 2.84 (expressed as bias ± precision) and ±5.58 as limits of agreement (data expressed as cmH2O). The ANNs estimated the PEEPtot well at different levels of PEEPapp under dynamic conditions, opening up new possibilities in monitoring PEEPi in critically ill patients who require ventilator treatment

    Pathophysiology of musculoskeletal pain: a narrative review

    Get PDF
    Musculoskeletal pain (excluding bone cancer pain) affects more than 30% of the global population and imposes an enormous burden on patients, families, and caregivers related to functional limitation, emotional distress, effects on mood, loss of independence, and reduced quality of life. The pathogenic mechanisms of musculoskeletal pain relate to the differential sensory innervation of bones, joints, and muscles as opposed to skin and involve a number of peripheral and central nervous system cells and mediators. The interplay of neurons and non-neural cells (e.g. glial, mesenchymal, and immune cells) amplifies and sensitizes pain signals in a manner that leads to cortical remodeling. Moreover, sex, age, mood, and social factors, together with beliefs, thoughts, and pain behaviors influence the way in which musculoskeletal pain manifests and is understood and assessed. The aim of this narrative review is to summarize the different pathogenic mechanisms underlying musculoskeletal pain and how these mechanisms interact to promote the transition from acute to chronic pain

    The use of positive end expiratory pressure in patients affected by COVID-19: Time to reconsider the relation between morphology and physiology

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a new disease with different phases that can be catastrophic for subpopulations of patients with cardiovascular and pulmonary disease states at baseline. Appreciation for these different phases and treatment modalities, including manipulation of ventilatory settings and therapeutics, has made it a less lethal disease than when it emerged earlier this year. Different aspects of the disease are still largely unknown. However, laboratory investigation and clinical course of the COVID-19 show that this new disease is not a typical acute respiratory distress syndrome process, especially during the first phase. For this reason, the best strategy to be applied is to treat differently the single phases and to support the single functions of the failing organs as they appear

    Investigation of dust grains by optical tweezers for space applications

    Full text link
    Cosmic dust plays a dominant role in the universe, especially in the formation of stars and planetary systems. Furthermore, the surface of cosmic dust grains is the bench-work where molecular hydrogen and simple organic compounds are formed. We manipulate individual dust particles in water solution by contactless and non-invasive techniques such as standard and Raman tweezers, to characterize their response to mechanical effects of light (optical forces and torques) and to determine their mineral compositions. Moreover, we show accurate optical force calculations in the T-matrix formalism highlighting the key role of composition and complex morphology in optical trapping of cosmic dust particles.This opens perspectives for future applications of optical tweezers in curation facilities for sample return missions or in extraterrestrial environments

    Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities

    Get PDF
    BackgroundIt is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. MethodsIn a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV.). Heterogeneity of ventilation was calculated as the coefficient of variation in sV. (CVsV.). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH(2)O and F(I)O(2)1.0 (Open Lung-PEEP = OLP). ResultsThe mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV. and poor aeration at ZEEP-0.21 than at OLP: 12.9 9.0 vs. 0.6 +/- 0.4% in the non-dependent level, and 17.5 +/- 8.2 vs. 0.4 +/- 0.1% in the dependent one (P = 0.041). The CVsV. of the total imaged lung at PEEP 12 cmH(2)O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 +/- 0.03 vs. 0.54 +/- 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. ConclusionZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.Peer reviewe

    New MACRO results on atmospheric neutrino oscillations

    Full text link
    The final results of the MACRO experiment on atmospheric neutrino oscillations are presented and discussed. The data concern different event topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb Scattering of the high energy muons in absorbers was used to estimate the neutrino energy of each event. The angular distributions, the L/E_nu distribution, the particle ratios and the absolute fluxes all favour nu_mu --> nu_tau oscillations with maximal mixing and Delta m^2 =0.0023 eV^2. A discussion is made on the Monte Carlos used for the atmospheric neutrino flux. Some results on neutrino astrophysics are also briefly discussed.Comment: Invited Paper at the NANP03 Int. Conf., Dubna, 200

    Wavelength-shifting fibers for calorimetric measurements in a long base line neutrino oscillation experiment

    Get PDF
    Abstract The NOE Collaboration has proposed a calorimeter to measure the energy of the final states of ν interaction events. The properties of long scintillator bars with wavelength-shifting fiber readout have been studied to develop a calorimeter design option. Various prototypes have been exposed to a cosmic rays stand. The total measured light yield in the middle of a 6 m -long fiber is about 15 photoelectrons. With this photon collection performance, it has been simulated that the calorimeter can achieve 17%/ E and 50%/ E resolutions for electrons and pions, respectively

    Stable amorphous georgeite as a precursor to a high-activity catalyst .

    Get PDF
    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored1—georgeite. The first three of these minerals are widely used as catalyst precursors2, 3, 4 for the industrially important methanol-synthesis and low-temperature water–gas shift (LTS) reactions5, 6, 7, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase2, 3, 8, 9, 10 is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite11; with few exceptions12 it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts
    • …
    corecore