80 research outputs found

    El hacinamiento carcelario en el establecimiento penitenciario de Chiclayo: la libertad anticipada, una alternativa de solución en los delitos de bagatela o de menor cuantía.

    Get PDF
    La presente investigación pretende analizar la no concesión de la libertad anticipada, con respecto a un marco referencial que integra: Empirismos Aplicativos, Discrepancias teóricas, normas que se deben cumplir, contexto internacional, entorno nacional y experiencias exitosas, mediante una descripción simple, con el propósito de identificar las causas partes del problema, de tal manera que tengamos base o fundamento para proponer recomendaciones que puedan contribuir a elevar su eficiencia y evitar la repetición de la crisis; si esto último fuera posible.Tesi

    Real-time monitoring of PtaHMGB activity in poplar transactivation assays

    Get PDF
    Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. Results: Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5? sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. Conclusions: We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our reporter in a gate-dependent manner. Moreover, we added new information about the PtaHMGB2/3 protein regulation along the day. This methodology can be easily adapted to other transcription factors and reporters

    Exercise during pregnancy attenuates prenatal depression: a randomized controlled trial

    Full text link
    Recent studies have estimated the prevalence of depression during pregnancy to be between 10% and 30%, which is higher than that in the postpartum period. Pharmacological treatment during pregnancy is difficult because of the possible side effects of antidepressants on the mother and the fetus. The aim of this study was to examine whether a supervised exercise program (EP) reduces depressive symptoms in pregnant women

    Understanding the role of 5-Methyl cytosine DNA demethylases in controlling winter dormacy of woody plants

    Get PDF
    Winter dormancy is the mechanism used by perennial plants to survive the harsh conditions of winter in temperate and cold regions and determines the geographical distribution of tree species (Chuine and Beaubien 2001; Horvath et al. 2003; Allona et al. 2008). Epigenetic control of winter dormancy in woody plants is barely known. Among the important epigenetic marks, 5-methyl cytosine (5mC) regulates gene expression in animals and plants. Global changes in 5mC DNA methylation have been shown in the transition of developmental stages in plants such as chestnut bud set and burst, flowering in azalea, aging in pine trees among other. However, the mechanism and the enzymes involved in the modification of the methylome and its control over those development processes remain to be identified. Our previous results showed higher DNA methylation and less acetylated Lys 8 of histone H4 global levels in poplar stem during winter dormancy compared to active growing season (Conde et al. 2013). Analysis of the 5-methyl cytosine levels by the application of the immunofluorescece-based method set up in our lab showed that DNA methylation leves fall suddenly when trees are near to restore the growing season coming from the dormant state. We have identified two poplar homologs to Arabidopsis DME gene: PtaDML8/PtaDML10. DME protein promotes global DNA demethylation along the genome during the endosperm development. Our RT-PCR analyses indicate that the expression of PtaDML8/PtaDML10 genes increases significantly when trees are near to restart growing after winter dormancy. The phenologycal assays showed that PtaDML8/PtaDML10 knockdown plants have a delayed in resuming of growth after dormancy. Taken together, we hypothesize that an active control of the 5mC DNA methylation might play a key role in winter dormancy and that 5mC demethylases would be crucial in this process

    Novel winter-associated regulators of the circadian clock in poplar

    Full text link
    Background Winter dormancy is an adaptive mechanism that allows trees from temperate and cold regions to survive the harsh conditions of this season. Critical steps of this process are strongly influenced by environmental cues, mainly daylength and temperature. The mechanism that integrates these signals is the circadian clock. Despite the importance of the correct functioning of the clock for the healthy state of the plant [1], low temperatures cause the disruption of the circadian clock in trees, which consists in a transcriptional activation followed by an arrhythmic expression [2-5]. In this work we uncover winter-associated regulators of the circadian clock in poplar. Methods Firstly, we made a transcriptional fusion with the promoter of LHY2, a circadian clock gene, and the luciferase gene. This construct was used to generate transgenic poplars (717-1B4, INRA clone). With these events we characterized the expression of this promoter under different conditions of photoperiod and temperature. To this aim we have set up a circadian luminiscence assay registering luciferase activity from leaf discs with a luminometer. Then we carried out a Yeast One Hybrid (Y1H) screening with a library enriched in winter-associated factors and using this promoter as bait. Candidate regulators are tested in vivo using Golden Braid technology [6] and transient assays in poplar, by which we overexpressed and silenced the candidate genes. Results and Conclusions Here we present the characterization of the Populus tremula x alba LHY2 promoter under three different photoperiod conditions. Our results indicate the selected promoter region contains the circadian elements as well as the luciferase activity shows the expected expression under both long and short days. In the Y1H screening, we found several candidates that are classified either as transcription factors or chromatin remodelers. We will discuss the possible role of these proteins as regulators of the poplar circadian clock

    Using clustering techniques for intelligent camera-based user interfaces

    Get PDF
    The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential

    Bio-inspired enhancement of reputation systems for intelligent environments

    Get PDF
    Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands

    The involvement of 5-methyl cytosine DNA Demethylases in the dormant-growth transition in poplar

    Get PDF
    Background Woody species are highly adapted to their habitats. In response to environmental cues woody perennials trigger self-protective developmental programmes, in which signal transduction, transcriptional reprogramming and epigenetic regulation could participate in defining the winter dormancy state. Winter dormancy is the mechanism used by perennial plants to survive the harsh conditions of winter in temperate and cold regions and determines the geographical distribution of tree species (Chuine and Beaubien 2001; Horvath et al. 2003; Allona et al. 2008). Epigenetic control of winter dormancy in woody plants is barely known. Among the important epigenetic marks, 5-methyl cytosine (5mC) regulates gene expression in animals and plants. Global changes in 5mC DNA methylation have been shown in the transition of developmental stages in plants such as chestnut bud set and burst, flowering in azalea, aging in pine trees among other. However, the mechanism and the enzymes involved in the modification of the methylome and its control over those development processes remain to be identified. Our previous results showed higher DNA methylation and less acetylated Lys 8 of histone H4 global levels in poplar stem during winter dormancy compared to active growing season (Conde et al. 2013). In this study we focus in the understanding of the molecular mechanism behind these changes in DNA methylation profile and their role in the control of winter dormancy. Methods Analysis of the 5-methyl cytosine levels by the application of the immunofluorescence-based method set up in our lab, in stem vibratome sections cut from hybrid poplar (Populus tremula x alba) growing in the field at different stages of winter dormancy process. To develop a protocol for buds paraffin wax embedding to analyze the level of 5-methyl cytosine by applying our immunofluorescence-based method in poplar apex microtome sections in diferents stages of winter dormancy. RT-PCR analysis to determine the profile of gene expresion at diferent stages of winter dormancy involved in modification of DNA methylation profile. Hybrid poplar transformation to obtain transgenic lines with modified expression of a demethylase and phenological experiments with selected lines. Results and Conclusions The immunolocalization assays performed in poplar stem sections showed that DNA methylation leves fall suddenly when trees coming from the dormant state are near to restore the growing season. We have determined the spatial distribution of DNA methylation changes in this organ. We have identified two poplar homologs to Arabidopsis DME gene: PtaDML8/PtaDML10. The DME protein promotes global DNA demethylation along the genome during endosperm development. Our RT-PCR analyses indicate that the expression of PtaDML8/PtaDML10 genes increases significantly when trees are near to restart growing after winter dormancy. The phenologycal assays showed that PtaDML8/PtaDML10 knockdown plants have a delayed in resuming of growth after dormancy. Taken together, we hypothesize that an active control of the 5mC DNA methylation might play a key role in winter dormancy and that 5mC demethylases would be crucial in this process
    corecore