8 research outputs found

    Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue

    Get PDF
    Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Cocaine use severity and cerebellar gray matter are associated with reversal learning deficits in cocaine-dependent individuals

    Get PDF
    Cocaine addiction involves persistent deficits to unlearn previously rewarded response options, potentially due to neuroadaptations in learning-sensitive regions. Cocaine-targeted prefrontal systems have been consistently associated with reinforcement learning and reversal deficits, but more recent interspecies research has raised awareness about the contribution of the cerebellum to cocaine addiction and reversal. We aimed at investigating the link between cocaine use, reversal learning and prefrontal, insula and cerebellar gray matter in cocaine-dependent individuals (CDIs) varying on levels of cocaine exposure in comparison with healthy controls (HCs). Twenty CDIs and 21 HCs performed a probabilistic reversal learning task (PRLT) and were subsequently scanned in a 3-Tesla magnetic resonance imaging scanner. In the PRLT, subjects progressively learn to respond to one predominantly reinforced stimulus, and thenmust learn to respond according to the opposite, previously irrelevant, stimulus-reward pairing. Performance measureswere errors after reversal (reversal cost), and probability of maintaining response after errors. Voxel-based morphometry was conducted to investigate the association between gray matter volume in the regions of interest and cocaine use and PRLT performance. Severity of cocaine use correlated with gray matter volume reduction in the left cerebellum (lobule VIII), while greater reversal cost was correlated with gray matter volume reduction in a partially overlapping cluster (lobules VIIb and VIII). Right insula/inferior frontal gyrus correlated with probability of maintaining response after errors. Severity of cocaine use detrimentally impacted reversal learning and cerebellar gray matter

    The DeepHealth HPC Infrastructure

    No full text
    International audienceThis chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices

    Adiciones y correcciones a la orquidoflora valenciana, V [Additions and corrections about valencian Orchidaceae]

    No full text
    RESUMEN: Se aportan datos sobre algunos táxones raros en la Comunidad Valenciana; a destacar la presencia de Orchis papilionacea subsp. grandiflora en Villena y Orchis collina en Santa Pola y Orihuela. También aportamos el comportamiento heterotrófico de Cephalanthera longifolia como novedad para España.ABSTRACT: Additions and corrections about valencian Orchidaceae. It is shown some data about rare orchid taxa at the Valencian Community, specially about Orchis papilionacea subsp. grandiflora in Villena and Orchis collina new in Santa Pola and Orihuela. We also provide heterotrophic behavior of Cephalanthera longifolia new for Spain

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text
    corecore