55 research outputs found

    FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis

    Get PDF
    AbstractHuntington's disease is characterised by the death of cortical and striatal neurons, and is the result of an expanded polyglutamine tract in the Huntingtin protein [1]. Huntingtin is present on both endocytic and secretory membrane organelles but its function is unclear [2,3]. Rab GTPases regulate both of these transport pathways [4]. We have previously shown that Rab8 controls polarised membrane transport by modulating cell morphogenesis [5]. To understand Rab8-mediated processes, we searched for Rab8-interacting proteins by the yeast two-hybrid system. Here, we report that Huntingtin is linked to the Rab8 protein through FIP-2, a tumour necrosis factor-α (TNF-α)-inducible coiled-coil protein related to the NEMO protein [6,7]. The activated form of Rab8 interacted with the amino-terminal region of FIP-2, whereas dominant-negative Rab8 did not. Huntingtin bound to the carboxy-terminal region of FIP-2. Coexpressed FIP-2 and Huntingtin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures, and FIP-2 promoted cell polarisation in a similar way to Rab8. We propose a model in which Huntingtin, together with FIP-2 and Rab8, are part of a protein network that regulates membrane trafficking and cellular morphogenesis

    CP110 Suppresses Primary Cilia Formation through Its Interaction with CEP290, a Protein Deficient in Human Ciliary Disease

    Get PDF
    SummaryPrimary cilia are nonmotile organelles implicated in signaling and sensory functions. Understanding how primary cilia assemble could shed light on the many human diseases caused by mutations in ciliary proteins. The centrosomal protein CP110 is known to suppress ciliogenesis through an unknown mechanism. Here, we report that CP110 interacts with CEP290— a protein whose deficiency is implicated in human ciliary disease—in a discrete complex separable from other CP110 complexes involved in regulating the centrosome cycle. Ablation of CEP290 prevents ciliogenesis without affecting centrosome function or cell-cycle progression. Interaction with CEP290 is absolutely required for the ability of CP110 to suppress primary cilia formation. Furthermore, CEP290 and CP110 interact with Rab8a, a small GTPase required for cilia assembly. Depletion of CEP290 interferes with localization of Rab8a to centrosomes and cilia. Our results suggest that CEP290 cooperates with Rab8a to promote ciliogenesis and that this function is antagonized by CP110

    Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA

    Get PDF
    The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous ` unit length form' vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells.Peer reviewe

    Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact

    Get PDF
    Seipin is an oligomeric integral endoplasmic reticulum (ER) protein involved in lipid droplet (LD) biogenesis. To study the role of seipin in LD formation, we relocalized it to the nuclear envelope and found that LDs formed at these new seipin-defined sites. The sites were characterized by uniform seipin-mediated ER-LD necks. At low seipin content, LDs only grew at seipin sites, and tiny, growth-incompetent LDs appeared in a Rab18-dependent manner. When seipin was removed from ER-LD contacts within 1 h, no lipid metabolic defects were observed, but LDs became heterogeneous in size. Studies in seipin-ablated cells and model membranes revealed that this heterogeneity arises via a biophysical ripening process, with triglycerides partitioning from smaller to larger LDs through droplet-bilayer contacts. These results suggest that seipin supports the formation of structurally uniform ER-LD contacts and facilitates the delivery of triglycerides from ER to LDs. This counteracts ripening-induced shrinkage of small LDs.Peer reviewe

    High-precision mapping of protein–protein interfaces: an integrated genetic strategy combining en masse mutagenesis and DNA-level parallel analysis on a yeast two-hybrid platform

    Get PDF
    Understanding networks of protein–protein interactions constitutes an essential component on a path towards comprehensive description of cell function. Whereas efficient techniques are readily available for the initial identification of interacting protein partners, practical strategies are lacking for the subsequent high-resolution mapping of regions involved in protein–protein interfaces. We present here a genetic strategy to accurately map interacting protein regions at amino acid precision. The system is based on parallel construction, sampling and analysis of a comprehensive insertion mutant library. The methodology integrates Mu in vitro transposition-based random pentapeptide mutagenesis of proteins, yeast two-hybrid screening and high-resolution genetic footprinting. The strategy is general and applicable to any interacting protein pair. We demonstrate the feasibility of the methodology by mapping the region in human JFC1 that interacts with Rab8A, and we show that the association is mediated by the Slp homology domain 1

    Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease

    Get PDF
    Cerebral dopamine neurotrophic factor (CDNF) protein has been shown to protect the nigrostriatal dopaminergic pathway when given as intrastriatal infusions in rat and mouse models of Parkinson's disease (PD). In this study, we assessed the neuroprotective effect of CDNF delivered with a recombinant adeno-associated viral (AAV) serotype 2 vector in a rat 6-hydroxydopamine (6-OHDA) model of PD. AAV2 vectors encoding CDNF, glial cell line-derived neurotrophic factor (GDNF), or green fluorescent protein were injected into the rat striatum. Protein expression analysis showed that our AAV2 vector efficiently delivered the neurotrophic factor genes into the brain and gave rise to a long-lasting expression of the proteins. Two weeks after AAV2 vector injection, 6-OHDA was injected into the rat striatum, creating a progressive degeneration of the nigrostriatal dopaminergic system. Treatment with AAV2-CDNF resulted in a marked decrease in amphetamine-induced ipsilateral rotations while it provided only partial protection of tyrosine hydroxylase (TH)-immunoreactive cells in the rat substantia nigra pars compacta and TH-reactive fibers in the striatum. Results from this study provide additional evidence that CDNF can be considered a potential treatment of Parkinson's disease.Peer reviewe
    • …
    corecore