73 research outputs found

    Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express and Mars Atmosphere and Volatile EvolutioN missions observations

    Get PDF
    Nightside suprathermal electron depletions have been observed at Mars by three spacecraft to date: Mars Global Surveyor, Mars Express, and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. This spatial and temporal diversity of measurements allows us to propose here a comprehensive view of the Martian electron depletions through the first multispacecraft study of the phenomenon. We have analyzed data recorded by the three spacecraft from 1999 to 2015 in order to better understand the distribution of the electron depletions and their creation mechanisms. Three simple criteria adapted to each mission have been implemented to identify more than 134,500 electron depletions observed between 125 and 900 km altitude. The geographical distribution maps of the electron depletions detected by the three spacecraft confirm the strong link existing between electron depletions and crustal magnetic field at altitudes greater than ~170 km. At these altitudes, the distribution of electron depletions is strongly different in the two hemispheres, with a far greater chance to observe an electron depletion in the Southern Hemisphere, where the strongest crustal magnetic sources are located. However, the unique MAVEN observations reveal that below a transition region near 160–170 km altitude the distribution of electron depletions is the same in both hemispheres, with no particular dependence on crustal magnetic fields. This result supports the suggestion made by previous studies that these low-altitudes events are produced through electron absorption by atmospheric CO2

    Statistics of counter-streaming solar wind suprathermal electrons at solar minimum : STEREO observations

    Get PDF
    Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs

    Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations

    Get PDF
    Copyright © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 LicenseOpen Access journalPrevious work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs

    Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B

    Get PDF
    The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at ∼ 1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models

    Solar Orbiter observations of the Kelvin-Helmholtz waves in the solar wind

    Get PDF
    Context. The Kelvin-HeImholtz (KH) instability is a nonlinear shear-driven instability that develops at the interface between shear flows in plasmas. KH waves have been inferred in various astrophysical plasmas, and have been observed in situ at the magnetospheric boundaries of solar-system planets and through remote sensing at the boundaries of coronal mass ejections. // Aims. KH waves are also expected to develop at flow shear interfaces in the solar wind. While they were hypothesized to play an important role in the mixing of plasmas and in triggering solar wind fluctuations, their direct and unambiguous observation in the solar wind was still lacking. // Methods. We report in-situ observations of quasi-periodic magnetic and velocity field variations plausibly associated with KH waves using Solar Orbiter during its cruise phase. They are found in a shear layer in the slow solar wind in the close vicinity of the Heliospheric Current Sheet. Analysis is performed to derive the local configuration of the waves. A 2-D MHD simulation is also set up with approximate empirical values to test the stability of the shear layer. In addition, magnetic spectra of the event are analyzed. Results. We find that the observed conditions satisfy the KH instability onset criterion from the linear theory analysis, and its de- velopment is further confirmed by the simulation. The current sheet geometry analyses are found to be consistent with KH wave development, albeit with some limitations likely owing to the complex 3D nature of the event and solar wind propagation. Addition- ally, we report observations of an ion jet consistent with magnetic reconnection at a compressed current sheet within the KH wave interval. The KH activity is found to excite magnetic and velocity fluctuations with power law scalings that approximately follow k−5/3 and k−2.8 in the inertial and dissipation ranges, respectively. Finally, we discuss reasons for the lack of in-situ KH wave detection in past data. // Conclusions. These observations provide robust evidence of KH wave development in the solar wind. This sheds new light on the process of shear-driven turbulence as mediated by the KH waves with implications for the driving of solar wind fluctuations

    Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations

    No full text
    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft is providing new detailed observations of the Martian ionosphere thanks to its unique orbital coverage and instrument suite. During most periapsis passages on the nightside ionosphere suprathermal electron depletions were detected. A simple criterion was implemented to identify the 1742 depletions observed from 16 November 2014 to 28 February 2015. A statistical analysis reveals that the main ion and electron populations within the depletions are surprisingly constant in time and altitude. Absorption by CO2 is the main loss process for suprathermal electrons, and electrons that strongly peaked around 6 eV are resulting from this interaction. The observation of depletions appears however highly dependent on altitude. Depletions are mainly located above strong crustal magnetic sources above 170 km, whereas the depletions observed for the first time below 170 km are globally scattered onto the Martian surface with no particular dependence on crustal fields

    Magnetic reconnection as a mechanism to produce multiple protonpopulations and beams locally in the solar wind

    Get PDF
    Context. Spacecraft observations early revealed frequent multiple proton populations in the solar wind. Decades of research on their origin have focused on processes such as magnetic reconnection in the low corona and wave-particle interactions in the corona and locally in the solar wind.Aims.This study aims to highlight that multiple proton populations and beams are also produced by magnetic reconnection occurring locally in the solar wind. Methods. We use high resolution Solar Orbiter proton velocity distribution function measurements, complemented by electron and magnetic field data, to analyze the association of multiple proton populations and beams with magnetic reconnection during a period of slow Alfv\'enic solar wind on 16 July 2020. Results. At least 6 reconnecting current sheets with associated multiple proton populations and beams, including a case of magnetic reconnection at a switchback boundary, are found during this day. This represents 2% of the measured distribution functions. We discuss how this proportion may be underestimated, and how it may depend on solar wind type and distance from the Sun. Conclusions. Although suggesting a likely small contribution, but which remains to be quantitatively assessed, Solar Orbiter observations show that magnetic reconnection must be considered as one of the mechanisms that produce multiple proton populations and beams locally in the solar wind

    Magnetic Reconnection inside a Flux Transfer Event‐like structure in Magnetopause Kelvin‐Helmholtz Waves

    Get PDF
    This is the final version. Available from the American Geophysical Union via the DOI in this recordMMS data are available from https://lasp.colorado.edu/mms/sdc/public/Magnetopause Kelvin‐Helmholtz (KH) waves are believed to mediate solar wind plasma transport via small‐scale mechanisms. Vortex‐induced reconnection (VIR) was predicted in simulations and recently observed using NASA's Magnetospheric Multiscale (MMS) mission data. Flux Transfer Events (FTEs) produced by VIR at multiple locations along the periphery of KH waves were also predicted in simulations but detailed observations were still lacking. Here we report MMS observations of an FTE‐type structure in a KH wave trailing edge during KH activity on 5 May 2017 on the dawnside flank magnetopause. The structure is characterised by (1) bipolar magnetic B Y variation with enhanced core field (B Z ) and (2) enhanced total pressure with dominant magnetic pressure. The cross‐section size of the FTE is found to be consistent with vortex‐induced flux ropes predicted in the simulations. Unexpectedly, we observe an ion jet (V Y ), electron parallel heating, ion and electron density enhancements, and other signatures that can be interpreted as a reconnection exhaust at the FTE central current sheet. Moreover, pitch angle distributions of suprathermal electrons on either side of the current sheet show different properties, indicating different magnetic connectivities. This FTE‐type structure may thus alternatively be interpreted as two interlaced flux tubes with reconnection at the interface as reported by Kacem et al. (2018) and Øieroset et al. (2019). The structure may be the result of interaction between two flux tubes, likely produced by multiple VIR at the KH wave trailing edge, and constitutes a new class of phenomenon induced by KH waves.Science and Technology Facilities Council (STFC)Thailand Science Research and InnovationNAS
    corecore