8 research outputs found

    Polarization lidars with conical scanning for retrieving the microphysical characteristics of cirrus clouds

    Get PDF
    The paper presents the first results of observations of cirrus clouds by polarization lidars with conical scanning, which were developed in Hefei (China) and in Tomsk (Russia). The light scattering matrix of ice crystal particles of cirrus clouds has been calculated for the first by the authors within the framework of the physical optics approximations in the case of conical scanning lidar. It is found that in this case the Mueller matrix consists of ten non-zero elements, four of which are small and can’t be applied to interpret the azimuthal distribution of particle orientation. All the diagonal elements have a strong azimuthal dependence. Among the off-diagonal elements only one element M34 carries additional information for interpreting the azimuthal distribution. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Mobile Aerosol Raman Polarizing Lidar LOSA-A2 for Atmospheric Sounding

    No full text
    The mobile aerosol Raman polarizing lidar LOSA-A2 designed at V.E. Zuev Institute of Atmospheric Optics SB RAS is presented. Its main technical specifications are given. The lidar carries out sounding of the atmosphere of a Nd:YAG laser at two wavelengths, 1064 nm and 532 nm. Optical selection of lidar signals at these wavelengths is performed by two identical telescopes with diameters of 120 mm and a focal length of 500 mm. In the visible channel, the signal is divided into two orthogonal polarized components, and a Raman signal at a wavelength of 607 nm is separated. The lidar was tested in aircraft and ship research expeditions. Results of the study of spatial aerosol distribution over the Baikal with the use of LOSA-A2 lidar received during ship-based research expeditions are described. The first in situ tests of the lidar were carried out in an aircraft expedition in the north of Western Siberia

    Aerosol monitoring in Siberia using an 808 nm automatic compact lidar

    Get PDF
    International audienceOur study provides new information on aerosol-type seasonal variability and sources in Siberia using observations (ground-based lidar and sun photometer combined with satellite measurements). A micropulse lidar emitting at 808 nm provided almost continuous aerosol backscatter measurements for 18 months (April 2015 to September 2016) in Siberia, near the city of Tomsk (56∘ N, 85∘ E). A total of 540 vertical profiles (300 daytime and 240 night-time) of backscatter ratio and aerosol extinction have been retrieved over periods of 30 min, after a careful calibration factor analysis. Lidar ratio and extinction profiles are constrained with sun-photometer aerosol optical depth at 808 nm (AOD808) for 70 % of the daytime lidar measurements, while 26 % of the night-time lidar ratio and AOD808 greater than 0.04 are constrained by direct lidar measurements at an altitude greater than 7.5 km and where a low aerosol concentration is found. An aerosol source apportionment using the Lagrangian FLEXPART model is used in order to determine the lidar ratio of the remaining 48 % of the lidar database. Backscatter ratio vertical profile, aerosol type and AOD808 derived from micropulse lidar data are compared with sun-photometer AOD808 and satellite observations (CALIOP space-borne lidar backscatter and extinction profiles, Moderate Resolution Imaging Spectroradiometer (MODIS) AOD550 and Infrared Atmospheric Sounding Interferometer (IASI) CO column) for three case studies corresponding to the main aerosol sources with AOD808>0.2 in Siberia. Aerosol typing using the FLEXPART model is consistent with the detailed analysis of the three case studies. According to the analysis of aerosol sources, the occurrence of layers linked to natural emissions (vegetation, forest fires and dust) is high (56 %), but anthropogenic emissions still contribute to 44 % of the detected layers (one-third from flaring and two-thirds from urban emissions). The frequency of dust events is very low (5 %). When only looking at AOD808>0.1, contributions from taiga emissions, forest fires and urban pollution become equivalent (25 %), while those from flaring and dust are lower (10 %–13 %). The lidar data can also be used to assess the contribution of different altitude ranges to the large AOD. For example, aerosols related to the urban and flaring emissions remain confined below 2.5 km, while aerosols from dust events are mainly observed above 2.5 km. Aerosols from forest fire emissions are observed to be the opposite, both within and above the planetary boundary layer (PBL)

    Identification of Aerosol Sources in Siberia and Study of Aerosol Transport at Regional Scale by Airborne and Space-Borne Lidar Measurement

    No full text
    Airborne lidar measurements were carried out over Siberia in July 2013 and June 2017. Aerosol optical properties are derived using the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations and Moderate Resolution Imaging Spectrometer (MODIS) AOD. Comparison with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol products is used to validate the CALIOP aerosol type identification above Siberia. Two case studies are discussed : a mixture of dust and pollution from Northern Kazakhstan and smoke plumes from forest fires. Comparisons with the CALIOP backscatter ratio show that CALIOP algorithm may overestimate the LR for a dusty mixture if not constrained by an independent AOD measurement

    Identification of Aerosol Sources in Siberia and Study of Aerosol Transport at Regional Scale by Airborne and Space-Borne Lidar Measurement

    No full text
    The 29th International Laser Radar Conference (ILRC 29)International audienceAirborne lidar measurements were carried out over Siberia in July 2013 and June 2017. Aerosol optical properties are derived using the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations and Moderate Resolution Imaging Spectrometer (MODIS) AOD. Comparison with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol products is used to validate the CALIOP aerosol type identification above Siberia. Two case studies are discussed: a mixture of dust and pollution from Northern Kazakhstan and smoke plumes from forest fires. Comparisons with the CALIOP backscatter ratio show that CALIOP algorithm may overestimate the LR for a dusty mixture if not constrained by an independent AOD measurement

    Polarization lidars with conical scanning for retrieving the microphysical characteristics of cirrus clouds

    No full text
    The paper presents the first results of observations of cirrus clouds by polarization lidars with conical scanning, which were developed in Hefei (China) and in Tomsk (Russia). The light scattering matrix of ice crystal particles of cirrus clouds has been calculated for the first by the authors within the framework of the physical optics approximations in the case of conical scanning lidar. It is found that in this case the Mueller matrix consists of ten non-zero elements, four of which are small and can’t be applied to interpret the azimuthal distribution of particle orientation. All the diagonal elements have a strong azimuthal dependence. Among the off-diagonal elements only one element M34 carries additional information for interpreting the azimuthal distribution. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Integrated airborne investigation of the air composition over the Russian sector of the Arctic

    No full text
    International audienceThe change of the global climate is most pronounced in the Arctic, where the air temperature increases 2 to 3 times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase in methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in a few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from on board the Optik Tu-134 aircraft laboratory in the period of ​​​​​​​4 to 17 September of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOx​​​​​​​, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 µm, black carbon, and organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing CO2. This process is most intense over the Barents and Kara seas. The recorded methane concentration was increased over all the Arctic seas, reaching 2090 ppb in the near-water layer over the Kara Sea. The contents of other gas components and black carbon were close to the background level.In bioaerosol, bacteria predominated among the identified microorganisms. In most samples, they were represented by coccal forms, less often spore-forming and non-spore-bearing rod-shaped bacteria. No dependence of the representation of various bacterial genera on the height and the sampling site was revealed. The most turbid during the experiment was the upper layer of the Chukchi and Bering seas. The Barents Sea turned out to be the most transparent. The differences in extinction varied by more than a factor of 1.5. In all measurements, except for the Barents Sea, the tendency of an increase in chlorophyll fluorescence in more transparent waters was observed

    Integrated airborne investigation of the air composition over the Russian Sector of the Arctic

    No full text
    International audienceThe change of the global climate is most pronounced in the Arctic, where the air temperature increases two to three times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase of methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from onboard the Optik Tu-134 aircraft laboratory in the period of September 4 to 17 of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOX, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 µm, black carbon, organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing СО2. This process is most intense over the Barents and Kara Seas. The recorded methan
    corecore