3,322 research outputs found

    Barycentric Subspace Analysis on Manifolds

    Full text link
    This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA).Comment: Annals of Statistics, Institute of Mathematical Statistics, A Para\^itr

    Conditional Density Estimation by Penalized Likelihood Model Selection and Applications

    Get PDF
    In this technical report, we consider conditional density estimation with a maximum likelihood approach. Under weak assumptions, we obtain a theoretical bound for a Kullback-Leibler type loss for a single model maximum likelihood estimate. We use a penalized model selection technique to select a best model within a collection. We give a general condition on penalty choice that leads to oracle type inequality for the resulting estimate. This construction is applied to two examples of partition-based conditional density models, models in which the conditional density depends only in a piecewise manner from the covariate. The first example relies on classical piecewise polynomial densities while the second uses Gaussian mixtures with varying mixing proportion but same mixture components. We show how this last case is related to an unsupervised segmentation application that has been the source of our motivation to this study.Comment: No. RR-7596 (2011

    Self-organized synchronization of mechanically coupled resonators based on optomechanics gain-loss balance

    Full text link
    We investigate collective nonlinear dynamics in a blue-detuned optomechanical cavity that is mechanically coupled to an undriven mechanical resonator. By controlling the strength of the driving field, we engineer a mechanical gain that balances the losses of the undriven resonator. This gain-loss balance corresponds to the threshold where both coupled mechanical resonators enter simultaneously into self-sustained limit cycle oscillations regime. Rich sets of collective dynamics such as in-phase and out-of-phase synchronizations therefore emerge, depending on the mechanical coupling rate, the optically induced mechanical gain and spring effect, and the frequency mismatch between the resonators. Moreover, we introduce the quadratic coupling that induces enhancement of the in-phase synchronization. This work shows how phonon transport can remotely induce synchronization in coupled mechanical resonator array and opens up new avenues for metrology, communication, phonon-processing, and novel memories concepts.Comment: Comments are welcome

    Thresholding methods to estimate the copula density

    Get PDF
    This paper deals with the problem of the multivariate copula density estimation. Using wavelet methods we provide two shrinkage procedures based on thresholding rules for which the knowledge of the regularity of the copula density to be estimated is not necessary. These methods, said to be adaptive, are proved to perform very well when adopting the minimax and the maxiset approaches. Moreover we show that these procedures can be discriminated in the maxiset sense. We produce an estimation algorithm whose qualities are evaluated thanks some simulation. Last, we propose a real life application for financial data

    Thresholding methods to estimate the copula density

    Get PDF
    This paper deals with the problem of the multivariate copula density estimation. Using wavelet methods we provide two shrinkage procedures based on thresholding rules for which the knowledge of the regularity of the copula density to be estimated is not necessary. These methods, said to be adaptive, are proved to perform very well when adopting the minimax and the maxiset approaches. Moreover we show that these procedures can be discriminated in the maxiset sense. We produce an estimation algorithm whose qualities are evaluated thanks some simulation. Last, we propose a real life application for financial data

    Gaussian Mixture Regression model with logistic weights, a penalized maximum likelihood approach

    Get PDF
    We wish to estimate conditional density using Gaussian Mixture Regression model with logistic weights and means depending on the covariate. We aim at selecting the number of components of this model as well as the other parameters by a penalized maximum likelihood approach. We provide a lower bound on penalty, proportional up to a logarithmic term to the dimension of each model, that ensures an oracle inequality for our estimator. Our theoretical analysis is supported by some numerical experiments
    • …
    corecore