8 research outputs found

    Physical and Functional Coupling of CFTR and PDE3A

    Get PDF
    Formation of multiple-protein macromolecular complexes at specialized subcellular microdomains increases the specificity and efficiency of signaling in cells. In this study, we demonstrated that phosphodiesterase type 3A (PDE3A) is physically and functionally coupled to cystic fibrosis transmembrane conductance regulator (CFTR). PDE3A inhibition increases cyclic adenosine 3′, 5′-monophosphate (cAMP) levels in a compartmentalized manner at the plasma membrane, which potentiates CFTR channel function and further clusters PDE3A and CFTR into microdomains. Actin skeleton disruption reduces PDE3A-CFTR interaction; segregates PDE3A from its interacting partners thus compromise the integrity of the macromolecular complex. Consequently, PDE3A inhibition no longer activates CFTR channel function in a compartmentalized manner. Physiologically, formation of the CFTR-PDE3A-containing macromolecular complexes was investigated using pig trachea submucosal gland secretion model. PDE3A inhibition augments CFTR-dependent submucosal gland secretion and actin skeleton disruption decreases secretion. These findings are important in understanding the regulation of CFTR function by phosphodiesterases

    Glucose transport by epithelia prepared from harvested enterocytes

    Get PDF
    Transformed and cultured cell lines have significant shortcomings for investigating the characteristics and responses of native villus enterocytes in situ. Interpretations of results from intact tissues are complicated by the presence of underlying tissues and the crypt compartment. We describe a simple, novel, and reproducible method for preparing functional epithelia using differentiated enterocytes harvested from the small intestine upper villus of adult mice and preterm pigs with and without necrotizing enterocolitis. Concentrative, rheogenic glucose uptake was used as an indicator of epithelial function and was demonstrated by cellular accumulation of tracer 14C d-glucose and Ussing chamber based short-circuit currents. Assessment of the epithelia by light and immunofluorescent microscopy revealed the harvested enterocytes remain differentiated and establish cell–cell connections to form polarized epithelia with distinct apical and basolateral domains. As with intact tissues, the epithelia exhibit glucose induced short-circuit currents that are increased by exposure to adenosine and adenosine 5′-monophosphate (AMP) and decreased by phloridzin to inhibit the apical glucose transporter SGLT-1. Similarly, accumulation of 14C d-glucose by the epithelia was inhibited by phloridzin, but not phloretin, and was stimulated by pre-exposure to AMP and adenosine, apparently by a microtubule-based mechanism that is disrupted by nocodazole, with the magnitudes of responses to adenosine, forskolin, and health status exceeding those we have measured using intact tissues. Our findings indicate that epithelia prepared from harvested enterocytes provide an alternative approach for comparative studies of the characteristics of nutrient transport by the upper villus epithelium and the responses to different conditions and stimuli

    Stabilizing Rescued Surface-Localized ΔF508 CFTR by Potentiation of Its Interaction with Na<sup>+</sup>/H<sup>+</sup> Exchanger Regulatory Factor 1

    No full text
    Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in CFTR, a plasma-membrane-localized anion channel. The most common mutation in CFTR, deletion of phenylalanine at residue 508 (ΔF508), causes misfolding of CFTR resulting in little or no protein at the plasma membrane. The CFTR corrector VX-809 shows promise for treating CF patients homozygous for ΔF508. Here, we demonstrate the significance of protein–protein interactions in enhancing the stability of the ΔF508 CFTR mutant channel protein at the plasma membrane. We determined that VX-809 prolongs the stability of ΔF508 CFTR at the plasma membrane. Using competition-based assays, we demonstrated that ΔF508 CFTR interacts poorly with Na<sup>+</sup>/H<sup>+</sup> exchanger regulatory factor 1 (NHERF1) compared to wild-type CFTR, and VX-809 significantly increased this binding affinity. We conclude that stabilized CFTR–NHERF1 interaction is a determinant of the functional efficiency of rescued ΔF508 CFTR. Our results demonstrate the importance of macromolecular-complex formation in stabilizing rescued mutant CFTR at the plasma membrane and suggest this to be foundational for the development of a new generation of effective CFTR-corrector-based therapeutics

    Compartmentalized Cyclic Adenosine 3′,5′-Monophosphate at the Plasma Membrane Clusters PDE3A and Cystic Fibrosis Transmembrane Conductance Regulator into Microdomains

    No full text
    PDE3A functionally and physically interacts with CFTR. Inhibition of PDE3A generates compartmentalized cAMP, which further clusters PDE3A and CFTR into microdomains at the plasma membrane of epithelial cells and potentiates CFTR channel function. Our findings provide insights into the important role of PDE3A in compartmentalized cAMP signaling
    corecore