123 research outputs found

    FISH and DAPI staining of the synaptonemal complex of the Nile tilapia (Oreochromis niloticus) allow orientation of the unpaired region of bivalent 1 observed during early pachytene

    Get PDF
    Bivalent 1 of the synaptonemal complex (SC) in XY male Oreochromis niloticus shows an unpaired terminal region in early pachytene. This appears to be related to recombination suppression around a sex determination locus. To allow more detailed analysis of this, and unpaired regions in the karyotype of other Oreochromis species, we developed techniques for FISH on SC preparations, combined with DAPI staining. DAPI staining identified presumptive centromeres in SC bivalents, which appeared to correspond to the positions observed in the mitotic karyotype (the kinetochores could only be identified sporadically in silver stained EM SC images). Furthermore, two BAC clones containing Dmo (dmrt4) and OniY227 markers that hybridize to known positions in chromosome pair 1 in mitotic spreads (near the centromere, FLpter 0.25, and the putative sex determination locus, FLpter 0.57, respectively) were used as FISH probes on SCs to verify that the presumptive centromere identified by DAPI staining was located in the expected position. Visualization of both the centromere and FISH signals on bivalent 1 allowed the unpaired region to be positioned at Flpter 0.80 to 1.00, demonstrating that the unpaired region is located in the distal part of the long arm(s). Finally, differences between mitotic and meiotic measurements are discussed

    Mapping the sex determination locus in the hāpuku (Polyprion oxygeneios) using ddRAD sequencing

    Get PDF
    Background  Hāpuku (Polyprion oxygeneios) is a member of the wreckfish family (Polyprionidae) and is highly regarded as a food fish. Although adults grow relatively slowly, juveniles exhibit low feed conversion ratios and can reach market size in 1–2 years, makingP. oxygeneiosa strong candidate for aquaculture. However, they can take over 5years to reach sexual maturity in captivity and are not externally sexually dimorphic, complicating many aspects of broodstock management. Understanding the sex determination system ofP. oxygeneiosand developing accurate assays to assign genetic sex will contribute significantly towards its full-scale commercialisation.  Results  DNA from parents and sexed offspring (n = 57) from a single family of captive bredP. oxygeneioswas used as a template for double digestion Restriction-site Associated DNA (ddRAD) sequencing. Two libraries were constructed usingSbfI–SphI andSbfI –NcoI restriction enzyme combinations, respectively. Two runs on an Illumina MiSeq platform generated 70,266,464 raw reads, identifying 19,669 RAD loci. A combined sex linkage map (1367cM) was constructed based on 1575 Single Nucleotide Polymorphism (SNP) markers that resolved into 35 linkage groups. Sex-specific linkage maps were of similar size (1132 and 1168cM for male and female maps respectively). A single major sex-determining locus, found to be heterogametic in males, was mapped to linkage group 14. Several markers were found to be in strong linkage disequilibrium with the sex-determining locus. Allele-specific PCR assays were developed for two of these markers, SphI6331 and SphI8298, and demonstrated to accurately differentiate sex in progeny within the same pedigree. Comparative genomic analyses indicated that many of the linkage groups within theP. oxygeneiosmap share a relatively high degree of homology with those published for the European seabass (Dicentrarchus labrax).  Conclusion  P. oxygeneioshas an XX/XY sex determination system. Evaluation of allele-specific PCR assays, based on the two SNP markers most closely associated with phenotypic sex, indicates that a simple molecular assay for sexingP. oxygeneiosshould be readily attainable. The high degree of synteny observed withD. labraxshould aid further molecular genetic study and exploitation of hāpuku as a food fish

    Sex-specific differences in the synaptonemal complex in the genus Oreochromis (Cichlidae)

    Get PDF
    Total synaptonemal complex (SC) lengths were estimated from Oreochromis aureus Steindachner (which has a WZ/ZZ sex determination system), O. mossambicus Peters and O. niloticus L. (both of which have XX/XY sex determination systems). The total SC length in oocytes was greater than that in spermatocytes in all three species (194Âą30 Îźm and 134Âą13 Îźm, 187Âą22 Îźm and 127Âą17 Îźm, 193Âą37 Îźm and 144Âą19 Îźm, respectively). These sex-specific differences did not appear to be influenced by the type of sex determination system (the female/male total SC length ratio was 1.45 in O. aureus, 1.47 in O. mossambicus and 1.34 in O. niloticus) and do not correlate with the lack of any overall sex-specific length differences in the current Oreochromis linkage map. Although based on data from relatively few species, there appears to be no consistent relationship between sex-specific SC lengths and linkage map lengths in fish. Neomale (hormonally masculinized genetic female) O. aureus and O. mossambicus had total SC lengths of 138Âą13 Îźm and 146Âą13 Îźm respectively, more similar to normal males than to normal females. These findings agree with data from other vertebrate species that suggest that phenotypic sex, rather than genotype, determines traits such as total SC length, chiasmata position and recombination pattern, at least for the autosomes

    Cytogenetic and histological studies of the brook trout, Salvelinus fontinalis (Mitchill), and the Arctic char, S-alpinus (L.) hybrids

    Get PDF
    Although brook trout and the Arctic char hybrids are able to reproduce, individuals with decreased fertility or even fish that are unable to produce any gametes have been also described. Abnormal gonadal development and disturbances in the gamete production in the char hybrid offspring may be triggered by the odd chromosome number and disturbances in their pairing during meiosis. To verify this hypothesis, cytogenetic examination and the gonadal histology analysis of the brook trout x Arctic char hybrids were carried out. Diploid chromosome number in the studied char (F-1) hybrids varied from 82 to 84 (FN = 99-102). Among 28 hybrids, 12 males, three females, nine intersex individuals and two sterile specimens were described. In the case of two individuals, gonads were not found. Diploid chromosome numbers in the males and intersex individuals varied from 82 to 84. Chromosome numbers in the females were 82 and 83 chromosomes. Two sterile fish exhibited karyotypes composed of 82 and 84 chromosomes. Predominance of the ovarian component in the intersex gonads and gonadal sex ratio distortion towards the males suggested hybrid females had problems with gonadal differentiation. However, the lack of the clear relationship between chromosome number and gonadal development in the studied hybrids did not support our hypothesis that odd chromosome number may be responsible for such reproductive disturbances in the hybrid individuals. We have presumed that sterility and intersexual development of the gonads may be caused by interactions between brook trout and Arctic char genes on the sex chromosomes and autosomes rather than unpairing of the parental chromosomes.Polish National Science Center (NCN) [N N311 525240]info:eu-repo/semantics/publishedVersio

    Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    Get PDF
    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use1. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments1, 2 and global crop models3 to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%–27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4–17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities

    Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan

    Get PDF
    Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443–HQ021749.

    Burning in Banksia Woodlands: How Does the Fire-Free Period Influence Reptile Communities?

    Get PDF
    Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8–12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats

    Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Get PDF
    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2–4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5–7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8–11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11Β) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2–4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period

    Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish

    Get PDF
    In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24&deg;C and 28&deg;C) and two daily thermocycles: 28:24&deg;C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28&deg;C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28&deg;C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28&deg;C (48 hours post fertilization; hpf) while it was delayed at 24&deg;C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled "gating" mechanism. Under 28&deg;C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28&deg;C and 24&deg;C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28&deg;C, respectively); while anti-m&uuml;llerian hormone (amh) expression in males increased in testis at 24&deg;C (3.6 fold higher compared to TC) and particularly at 28&deg;C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation
    • …
    corecore