91 research outputs found

    YOGY: a web-based, integrated database to retrieve protein orthologs and associated Gene Ontology terms

    Get PDF
    We present YOGY a web-based resource for orthologous proteins from nine eukaryotic organisms: Homo sapiens, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, Plasmodium falciparum, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Using a gene name from any of these organisms as a query, this database provides comprehensive, combined information on orthologs in other species using data from five independent resources: KOGs, Inparanoid, HomoloGene, OrthoMCL and a table of curated fission and budding yeast orthologs. Associated Gene Ontology (GO) terms of orthologs can also be retrieved for functional inference. Integrating these different and complementary datasets provides a straightforward tool to identify known and predicted orthologs of proteins from a variety of species. This resource should be useful for bench scientists looking for functional clues for their genes of interest as well as for curators looking for information that can be transferred based on orthology and for rapidly identifying the relevant GO terms as an aid to literature curation. YOGY is accessible online at

    Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing.

    Get PDF
    This work was supported by Wellcome Trust Grant 096388, JDRF Grant 9-2011-253, the National Institute for Health Research Cambridge Biomedical Research Centre (BRC) and Award P01AI039671 (to LSW. and JAT.) from the National Institute of Allergy and Infectious Diseases (NIAID). CW is supported by the Wellcome Trust (089989). The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of NIAID or the National Institutes of Health. The Cambridge Institute for Medical Research is in receipt of Wellcome Trust Strategic Award 100140. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers. We thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. We thank Fay Rodger and Ruth Littleboy for running the Illumina MiSeq in the Molecular Genetics Laboratories, Addenbrooke's Hospital, Cambridge. This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. In particular, we wish to thank Anna Petrunkina Harrison, Simon McCallum, Christopher Bowman, Natalia Savinykh, Esther Perez and Jelena Markovic Djuric for their advice and support in cell sorting. We also thank Helen Stevens, Pamela Clarke, Gillian Coleman, Sarah Dawson, Jennifer Denesha, Simon Duley, Meeta Maisuria-Armer and Trupti Mistry for acquisition and preparation of samples.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/eji.20154564

    Secondary findings in inherited heart conditions: a genotype-first feasibility study to assess phenotype, behavioural and psychosocial outcomes.

    Get PDF
    Funder: DH | National Institute for Health Research (NIHR); doi: https://doi.org/10.13039/501100000272Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Rhodes Scholarships; doi: https://doi.org/10.13039/501100000697Funder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440Funder: British Heart Foundation (BHF); doi: https://doi.org/10.13039/501100000274Disclosing secondary findings (SF) from genome sequencing (GS) can alert carriers to disease risk. However, evidence around variant-disease association and consequences of disclosure for individuals and healthcare services is limited. We report on the feasibility of an approach to identification of SF in inherited cardiac conditions (ICC) genes in participants in a rare disease GS study, followed by targeted clinical evaluation. Qualitative methods were used to explore behavioural and psychosocial consequences of disclosure. ICC genes were analysed in genome sequence data from 7203 research participants; a two-stage approach was used to recruit genotype-blind variant carriers and matched controls. Cardiac-focused medical and family history collection and genetic counselling were followed by standard clinical tests, blinded to genotype. Pathogenic ICC variants were identified in 0.61% of individuals; 20 were eligible for the present study. Four variant carriers and seven non-carrier controls participated. One variant carrier had a family history of ICC and was clinically affected; a second was clinically unaffected and had no relevant family history. One variant, in two unrelated participants, was subsequently reclassified as being of uncertain significance. Analysis of qualitative data highlights participant satisfaction with approach, willingness to follow clinical recommendations, but variable outcomes of relatives' engagement with healthcare services. In conclusion, when offered access to SF, many people choose not to pursue them. For others, disclosure of ICC SF in a specialist setting is valued and of likely clinical utility, and can be expected to identify individuals with, and without a phenotype

    Navigating Public Microarray Databases

    Get PDF
    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources

    The NMR restraints grid at BMRB for 5,266 protein and nucleic acid PDB entries

    Get PDF
    Several pilot experiments have indicated that improvements in older NMR structures can be expected by applying modern software and new protocols (Nabuurs et al. in Proteins 55:483–186, 2004; Nederveen et al. in Proteins 59:662–672, 2005; Saccenti and Rosato in J Biomol NMR 40:251–261, 2008). A recent large scale X-ray study also has shown that modern software can significantly improve the quality of X-ray structures that were deposited more than a few years ago (Joosten et al. in J. Appl Crystallogr 42:376–384, 2009; Sanderson in Nature 459:1038–1039, 2009). Recalculation of three-dimensional coordinates requires that the original experimental data are available and complete, and are semantically and syntactically correct, or are at least correct enough to be reconstructed. For multiple reasons, including a lack of standards, the heterogeneity of the experimental data and the many NMR experiment types, it has not been practical to parse a large proportion of the originally deposited NMR experimental data files related to protein NMR structures. This has made impractical the automatic recalculation, and thus improvement, of the three dimensional coordinates of these structures. We here describe a large-scale international collaborative effort to make all deposited experimental NMR data semantically and syntactically homogeneous, and thus useful for further research. A total of 4,014 out of 5,266 entries were ‘cleaned’ in this process. For 1,387 entries, human intervention was needed. Continuous efforts in automating the parsing of both old, and newly deposited files is steadily decreasing this fraction. The cleaned data files are available from the NMR restraints grid at http://restraintsgrid.bmrb.wisc.edu

    Germline mutations in the transcription factor IKZF5 cause thrombocytopenia.

    Get PDF
    To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans

    A dominant gain-of-function mutation in universal tyrosine kinase <i>SRC </i>causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies

    Get PDF
    The Src family kinase (SFK)member SRC is amajor target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, whichwe confirmedwith in vitro studies showing increased SRC kinase activity and enhanced Tyr419 phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patientswith myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of a-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC formMKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC- positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets andMKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors. © 2016 by the American Association for the Advancement of Science; all rights reserved

    A gain-of-function variant in <i>DIAPH1 </i>causes dominant macrothrombocytopenia and hearing loss

    Get PDF
    Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MK). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping and similarity regression. We describe two unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 p.R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was associated with reduced proplatelet formation from cultured MKs, cell clustering and abnormal cortical filamentous actin. Similarly, in platelets there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Over-expression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insights into the autoregulation of DIAPH1 activity
    corecore