82 research outputs found

    Optical testbed for the LISA phasemeter

    Get PDF
    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.DLR/50 OQ 1301Bundesministerium f¨ur Wirtschaft und Technologi

    Picometer-Stable Hexagonal Optical Bench to Verify LISA Phase Extraction Linearity and Precision

    Get PDF
    The Laser Interferometer Space Antenna (LISA) and its metrology chain have to fulfill stringent performance requirements to enable the space-based detection of gravitational waves. This implies the necessity of performance verification methods. In particular, the extraction of the interferometric phase, implemented by a phasemeter, needs to be probed for linearity and phase noise contributions. This Letter reports on a hexagonal quasimonolithic optical bench implementing a three-signal test for this purpose. Its characterization as sufficiently stable down to picometer levels is presented as well as its usage for a benchmark phasemeter performance measurement under LISA conditions. These results make it a candidate for the core of a LISA metrology verification facility

    Single-element dual-interferometer for precision inertial sensing

    Get PDF
    Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level.</p> <p>Results</p> <p>Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif.</p> <p>Conclusions</p> <p>Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.</p

    Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons

    Get PDF
    Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons

    Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families

    Get PDF
    PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers

    Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    Get PDF
    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes
    corecore