24 research outputs found

    Atmospheric nitrous acid (HONO) at a rural coastal site in North China: Seasonal variations and effects of biomass burning

    Get PDF
    Nitrous acid (HONO) plays a significant role in atmospheric chemistry due to its contribution to hydroxyl radical (OH). However, no scientific consensus has been achieved about the daytime HONO formation mechanisms. To identify the seasonal variations of HONO chemistry and the impacts of biomass burning (BB), we performed a two-phased field study in winter-spring and summer (covering a harvest season) in 2017 at a rural coastal site in North China. Though the mean HONO concentration in winter-spring (0.26 +/- 0.28 ppbv) was higher than in summer (0.17 + 0.19 ppbv), the maximum HONO concentrations were comparable (similar to 2 ppbv) in the two campaigns. Both the HONO/NOx ratio and nocturnal heterogeneous conversion efficiency of HONO (C-HONO) in summer were over twice of that in winter-spring. The daytime budget analysis also revealed that the strength of P(othe)r (i.e., the HONO sources apart from the reaction of OH + NO) in summer was double of that in winter-spring. BB affected the HONO concentration by enhancing the contribution of heterogeneous HONO production on the aerosol surface but weakening the role of photo-related HONO formation. HONO photolysis was a significant source of OH in both winter-spring and summer, and its contribution could be further enhanced during the BB episode in summer. Our study demonstrates the significant seasonal variations of HONO and the effects of BB, and suggests needs for more multi-season observations and considerations of BB, especially during the harvest time, in HONO research

    Diseño de 1600 ML de adoquinado, ubicado en los barrios: anexo a la villa Victoria de julio, Antonio Mendoza y Rubén Ulloa; en el casco urbano de Tipitapa, municipio de Managua

    Get PDF
    El desarrollo de nuestro país se basa en elementos fundamentales, como: agricultura industria, ganadería, comercio, turismo, etc. Pero el factor determinante entre estos es el sistema nacional de transporte es decir: transporte terrestre, transporte aéreo, transporte marítimo, etc. el cual es el enlace principal para el desarrollo de la sociedad. En Nicaragua el transporte terrestre es el más utilizado por la población, y debido al aumento de la movilización de vehículos con motores más potentes por las vías, obliga a la modernización de la infraestructura vial, permitiendo un tránsito más seguro y eficiente. El incremento de la red vial está vinculado directamente con la economía de nuestro país, pues su papel es primordial en las actividades que se realizan a diario en los diferentes sectores que aportan a la economía nacional. Actualmente la construcción de nuevas vías de comunicación, rehabilitación de carreteras y mejoras de los caminos ya existentes debe ser una necesidad para los gobiernos, ya que constituyen un componente fundamental para el bienestar y desarrollo de la sociedad, además su diseño debe adoptar las condiciones necesarias para obtener una obra de calidad; cumpliéndose en el todos los principios y normas correspondientes al diseño de carreteras. El presente trabajo denominado ‘‘Diseño de 1600 ML de calle, ubicados en los barrios: Anexo la Villa Rubén Ulloa, Villa Victoria de Julio y Antonio Mendoza localizados en el casco urbano de Tipitapa, municipio de Managua’’. Muestra en su contenido los estudios, métodos y normas aplicables para elaborar: el diseño geométrico de la vía, diseño hidráulico y de la estructura de pavimento, tomando en cuenta las especificaciones correspondientes al diseño de carreteras en Nicaragua

    Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol

    Get PDF
    Oxygenated organic molecules (OOMs) are crucial for atmospheric new particle formation and secondary organic aerosol (SOA) growth. Therefore, understanding their chemical composition, temporal behavior, and sources is of great importance. Previous studies on OOMs mainly focus on environments where biogenic sources are predominant, yet studies on sites with dominant anthropogenic emissions, such as megacities, have been lacking. Here, we conducted long-term measurements of OOMs, covering four seasons of the year 2019, in urban Beijing. The OOM concentration was found to be the highest in summer (1.6 x 10(8) cm(-3)), followed by autumn (7.9 x 10(7) cm(-3)), spring (5.7 x 10(7) cm(-3)) and winter (2.3 x 10(7) cm(-3)), suggesting that enhanced photo-oxidation together with the rise in temperature promote the formation of OOMs. Most OOMs contained 5 to 10 carbon atoms and 3 to 7 effective oxygen atoms (nO(eff) = nO - 2 x nN). The average nO(eff )increased with increasing atmospheric photo-oxidation capacity, which was the highest in summer and the lowest in winter and autumn. By performing a newly developed workflow, OOMs were classified into the following four types: aromatic OOMs, aliphatic OOMs, isoprene OOMs, and monoterpene OOMs. Among them, aromatic OOMs (29 %-41 %) and aliphatic OOMs (26 %-41 %) were the main contributors in all seasons, indicating that OOMs in Beijing were dominated by anthropogenic sources. The contribution of isoprene OOMs increased significantly in summer (33 %), which is much higher than those in the other three seasons (8 %-10 %). Concentrations of isoprene (0.2-5.3 x 10(7) cm(-3)) and monoterpene (1.1-8.4 x 10(6) cm(-3)) OOMs in Beijing were lower than those reported at other sites, and they possessed lower oxygen and higher nitrogen contents due to high NO, levels (9.5-38.3 ppbv - parts per billion by volume) in Beijing. With regard to the nitrogen content of the two anthropogenic OOMs, aromatic OOMs were mainly composed of CHO and CHON species, while aliphatic OOMs were dominated by CHON and CHON2 ones. Such prominent differences suggest varying formation pathways between these two OOMs. By combining the measurements and an aerosol dynamic model, we estimated that the SOA growth rate through OOM condensation could reach 0.64, 0.61, 0.41, and 0.30 mu g m(-3) h(-1) in autumn, summer, spring, and winter, respectively. Despite the similar concentrations of aromatic and aliphatic OOMs, the former had lower volatilities and, therefore, showed higher contributions (46 %-62 %) to SOA than the latter (14 %-32 %). By contrast, monoterpene OOMs and isoprene OOMs, limited by low abundances or high volatilities, had low contributions of 8 %-12 % and 3 %-5 %, respectively. Overall, our results improve the understanding of the concentration, chemical composition, seasonal variation, and potential atmospheric impacts of OOMs, which can help formulate refined restriction policy specific to SOA control in urban areas.Peer reviewe

    Altered spontaneous brain activity during dobutamine challenge in healthy young adults: A resting-state functional magnetic resonance imaging study

    Get PDF
    IntroductionThere is a growing interest in exploring brain-heart interactions. However, few studies have investigated the brain-heart interactions in healthy populations, especially in healthy young adults. The aim of this study was to explore the association between cardiovascular and spontaneous brain activities during dobutamine infusion in healthy young adults.MethodsForty-eight right-handed healthy participants (43 males and 5 females, range: 22–34 years) underwent vital signs monitoring, cognitive function assessment and brain MRI scans. Cardiovascular function was evaluated using blood pressure and heart rate, while two resting-state functional magnetic resonance imaging (rs-fMRI) methods—regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF)—were used together to reflect the local neural activity of the brain. Logistic regression was used to model the association between brain and heart.ResultsResults showed that blood pressure and heart rate significantly increased after dobutamine infusion, and the performance in brain functional activity was the decrease in ReHo in the left gyrus rectus and in ALFF in the left frontal superior orbital. The results of logistic regression showed that the difference of diastolic blood pressure (DBP) had significant positive relationship with the degree of change of ReHo, while the difference of systolic blood pressure (SBP) had significant negative impact on the degree of change in ALFF.DiscussionThese findings suggest that the brain-heart interactions exist in healthy young adults under acute cardiovascular alterations, and more attention should be paid to blood pressure changes in young adults and assessment of frontal lobe function to provide them with more effective health protection management

    Properties Variation of Carbon Fiber Reinforced Composite for Marine Current Turbine in Seawater

    No full text
    Turbine blade which are generally made of composite is a core device among components of tidal current power generator that converts the flow of tidal current into a turning force. Recent years, damages of composite turbine blades have been reported due to reasons like seawater degradation, lake of strength, manufacture etc. In this paper, water absorption, tensile, bending, longitudinal transverse shearing properties of carbon fiber reinforced plastic (CRP) composite which would be applied to fabricate the marine current turbine blade has been investigated. Furthermore, the variations of properties with seawater immersion period were studied. The results indicated that the water absorption increased almost linearly at the beginning of immersion and then became stable. Tensile strength of specimen tended to decrease firstly and then recovered slightly. However, the longitudinal transverse shearing strength showed reverse variation trend comparing to tensile strength. And the bending property of specimens was depressed significantly. The properties variations in seawater shall be referenced to design and fabrication of composite marine current turbine blade

    Nitrous acid in marine boundary layer over eastern Bohai Sea, China: Characteristics, sources, and implications

    No full text
    International audienceNitrous acid (HONO) serves as a key source of hydroxyl radicals and plays important roles in atmospheric photochemistry. In this study, gaseous HONO and related species and parameters were measured in autumn of 2016 at a marine background site on Tuoji Island in eastern Bohai Sea, China. The HONO concentration in marine boundary layer (MBL) was on average 0.20 ± 0.20 ppbv (average ± standard deviation) with a maximum hourly value of 1.38 ppbv. It exhibited distinct diurnal variations featuring with elevated concentrations in the late night and frequent concentration peaks in the early afternoon. During nighttime, the HONO was produced at a fast rate with the NO2-HONO conversion rate ranging from 0.006 to 0.036 h−1. The fast HONO production and the strong dependence of temperature implied the enhancement of nocturnal HONO formation caused by air-sea interactions at high temperature. At daytime, HONO concentration peaks were frequently observed between 13:00–15:00. The observed daytime HONO concentrations were substantially higher than those predicted in the photostationary state in conditions of intensive solar radiation and high temperature. Strong or good correlations between the missing HONO production rate and temperature or photolysis frequency suggest a potential source of HONO from the photochemical conversions of nitrogen-containing compounds in sea microlayer. The source intensity strengthened quickly when the temperature was high. The abnormally high concentrations of daytime HONO contributed a considerable fraction to the primary OH radicals in the MBL

    Multi-Objective Optimization of the Microchannel Heat Sink Used for Combustor of the Gas Turbine

    No full text
    This research presents a surrogate model and computational fluid dynamic analysis-based multi-objective optimization approach for microchannel heat sinks. The Non-dominated Sorting Genetic Algorithm is suggested to obtain the optimal solution set, and the Kriging model is employed to lower the simulation’s computational cost. The physical model consists of a coolant chamber, a mainstream chamber, and a solid board equipped with staggered Zigzag cooling channels. Five design variables are examined in relation to the geometric characteristics of the microchannel heat sinks: the length of inlet of the cooling channels, the width of the cooling channels, the length of the “zigzag”, the height of the cooling channels, and the periodic spanwise width. The optimal geometry is established by choosing the averaged cooling effectiveness and coolant mass flow rate which enters the mainstream chamber through the microchannel heat sinks as separate objectives. From the Pareto front, the optimal microchannel heat sinks structures are obtained. Three optimized results are studied, including the maximum cooling effectiveness, minimum coolant mass flow rate, and a compromise between the both objectives; a reference case using the median is compared as well. Numerical assessments corresponding to the four cases are performed, and the flow and cooling performance are compared. Furthermore, an analysis is conducted on the mechanisms that impact the ideal geometric parameters for cooling performance

    Properties Variation of Carbon Fiber Reinforced Composite for Marine Current Turbine in Seawater

    No full text
    Turbine blade which are generally made of composite is a core device among components of tidal current power generator that converts the flow of tidal current into a turning force. Recent years, damages of composite turbine blades have been reported due to reasons like seawater degradation, lake of strength, manufacture etc. In this paper, water absorption, tensile, bending, longitudinal transverse shearing properties of carbon fiber reinforced plastic (CRP) composite which would be applied to fabricate the marine current turbine blade has been investigated. Furthermore, the variations of properties with seawater immersion period were studied. The results indicated that the water absorption increased almost linearly at the beginning of immersion and then became stable. Tensile strength of specimen tended to decrease firstly and then recovered slightly. However, the longitudinal transverse shearing strength showed reverse variation trend comparing to tensile strength. And the bending property of specimens was depressed significantly. The properties variations in seawater shall be referenced to design and fabrication of composite marine current turbine blade

    Characteristics of airborne water-soluble organic carbon (WSOC) at a background site of the North China Plain

    No full text
    Water-soluble organic carbon (WSOC), a significant part of organic carbon (OC) in fine particles, can alter the hygroscopic properties of aerosols and affect global climate change. In this study, PM2.5 filter samples were collected in 2017 winter and summer to investigate the secondary formation, sources and light absorption properties of WSOC. The average WSOC/OC was 66% with the higher value in summer (74%). There are strong correlations between WSOC and secondary components like secondary organic carbon (SOC) and inorganic ions while the correlation between WSOC and EC was weak, indicating secondary formation contributed a dominant portion to WSOC at this site. Moreover, high aerosol liquid water (ALW) and particle acidity were found to enhance the secondary formation of WSOC. The sources of WSOC investigated with Positive Matrix Factorization model (PMF) demonstrated that secondary formation was dominated with 59.9% in winter and 77.9% in summer. The absorption Angstrom exponents (AAE) were 6.88 in winter and 9.15 in summer. The MAE(365) in winter (1.32m(2) g(-1)) was higher than that in summer (0.38m(2) g(-1)), indicating the stronger light absorption ability of WSOC in winter. The radiative forcing of WSOC by light absorption corresponded to only 1-10% of that caused by EC. The potential source contribution function (PSCF) identified inland cities in Shandong province, eastern Henan and Jiangsu province as major source regions of WSOC. The findings from this study imply a critical role of secondary formation characteristics of WSOC at the regional background site of the North China Plain
    corecore