2,207 research outputs found

    Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach

    Full text link
    The quantum anomalous Hall effect (QAHE) has been recently demonstrated in Cr- and V-doped three-dimensional topological insulators (TIs) at temperatures below 100 mK. In those materials, the spins of unfilled d-electrons in the transition metal dopants are exchange coupled to develop a long-range ferromagnetic order, which is essential for realizing QAHE. However, the addition of random dopants does not only introduce excess charge carriers that require readjusting the Bi/Sb ratio, but also unavoidably introduces paramagnetic spins that can adversely affect the chiral edge transport in QAHE. In this work, we show a heterostructure approach to independently tune the electronic and magnetic properties of the topological surface states in (BixSb1-x)2Te3 without resorting to random doping of transition metal elements. In heterostructures consisting of a thin (BixSb1-x)2Te3 TI film and yttrium iron garnet (YIG), a high Curie temperature (~ 550 K) magnetic insulator, we find that the TI surface in contact with YIG becomes ferromagnetic via proximity coupling which is revealed by the anomalous Hall effect (AHE). The Curie temperature of the magnetized TI surface ranges from 20 to 150 K but is uncorrelated with the Bi fraction x in (BixSb1-x)2Te3. In contrast, as x is varied, the AHE resistivity scales with the longitudinal resistivity. In this approach, we decouple the electronic properties from the induced ferromagnetism in TI. The independent optimization provides a pathway for realizing QAHE at higher temperatures, which is important for novel spintronic device applications.Comment: Accepted by Nano Letter

    Excessive and asymmetrical removal of heterozygous sites by maxSH biases downstream population genetic inference: Implications for hybridization between two primroses

    Get PDF
    Techniques of reduced-representation sequencing (RRS) have revolutionized ecological and evolutionary genomics studies. Precise establishment of orthologs is a critical challenge for RRS, especially when a reference genome is absent. The proportion of shared heterozygous sites across samples is an alternative criterion for filtering paralogs. In the prevailing pipeline for variant calling of RRS data – PYRAD/IPYRAD, maxSH is an often overlooked parameter with implications to detecting and filtering paralogs according to shared heterozygosity. Using empirical genotyping by sequencing data of two primroses (Primula alpicola Stapf and Primula florindae Ward) and their putative hybrids, and extra data sets of Californian golden cup oaks, we explore the impact of maxSH on filtering paralogs and further downstream analyses. Our study sheds light on the simultaneous validity and risk of filtering paralogs using maxSH, and its significant effects on downstream analyses of outlier detection, population assignment, and demographic modeling, emphasizing the importance of attention to detail during bioinformatic processes. The mutual confirmation between results of population assignment and demographic modeling in this study suggested maxSH = 0.10 has a potentially excessive and asymmetrical effect on the removal of truly shared heterozygous sites as paralogs. These results indicate that hybridization origin hypotheses of putative hybrids represented by results with maxSH = 0.25 and 0.50 are more credible. In conclusion, we revealed the critical hazard of paralogs filtration according to sharing heterozygosity at first, so that we propose to use specific protocols, rather than maxSH, to filter potential paralogs for closely related lineages.info:eu-repo/semantics/acceptedVersio

    Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state

    Get PDF
    The quantum anomalous Hall (QAH) effect is predicted to possess, at zero magnetic field, chiral edge channels that conduct spin polarized current without dissipation. While edge channels have been observed in previous experimental studies of the QAH effect, their dissipationless nature at a zero magnetic field has not been convincingly demonstrated. By a comprehensive experimental study of the gate and temperature dependences of local and nonlocal magnetoresistance, we unambiguously establish the dissipationless edge transport. By studying the onset of dissipation, we also identify the origin of dissipative channels and clarify the surprising observation that the critical temperature of the QAH effect is two orders of magnitude smaller than the Curie temperature of ferromagnetism.Comment: main text+supporting materials. This is the accepted version for PRL. Comments are welcom

    Comparison of Passive Microwave Data with Shipborne Photographic Observations of Summer Sea Ice Concentration along an Arctic Cruise Path

    Get PDF
    Arctic sea ice concentration (SIC) has been studied extensively using passive microwave (PM) remote sensing. This technology could be used to improve navigation along vessel cruise paths; however, investigations on this topic have been limited. In this study, shipborne photographic observation (P-OBS) of sea ice was conducted using oblique-oriented cameras during the Chinese National Arctic Research Expedition in the summer of 2016. SIC and the areal fractions of open water, melt ponds, and sea ice (Aw, Ap, and Ai, respectively) were determined along the cruise path. The distribution of SIC along the cruise path was U-shaped, and open water accounted for a large proportion of the path. The SIC derived from the commonly used PM algorithms was compared with the moving average (MA) P-OBS SIC, including Bootstrap and NASA Team (NT) algorithms based on Special Sensor Microwave Imager/Sounder (SSMIS) data; and ARTIST sea ice, Bootstrap, Sea Ice Climate Change Initiative, and NASA Team 2 (NT2) algorithms based on Advanced Microwave Scanning Radiometer 2 (AMSR2) data. P-OBS performed better than PM remote sensing at detecting low SIC (< 10%). Our results indicate that PM SIC overestimates MA P-OBS SIC at low SIC, but underestimates it when SIC exceeds a turnover point (TP). The presence of melt ponds affected the accuracy of the PM SIC; the PM SIC shifted from an overestimate to an underestimate with increasing Ap, compared with MA P-OBS SIC below the TP, while the underestimation increased above the TP. The PM algorithms were then ranked; SSMIS-NT and AMSR2-NT2 are the best and worst choices for Arctic navigation, respectively

    Proximity Driven Enhanced Magnetic Order at Ferromagnetic Insulator / Magnetic Topological Insulator Interface

    Get PDF
    Magnetic exchange driven proximity effect at a magnetic insulator / topological insulator (MI/TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. Here we report a dramatic enhancement of proximity exchange coupling in the MI / magnetic-TI EuS / Sb2−x_{2-x}Vx_xTe3_3 hybrid heterostructure, where V doping is used to drive the TI (Sb2_{2}Te3_3) magnetic. We observe an artificial antiferromagnetic-like structure near the MI/TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping provides insights into controllable engineering of magnetic order using a hybrid heterostructure.Comment: 5 pages, 4 figure
    • 

    corecore