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Abstract

Techniques  of  reduced-representation  sequencing  (RRS)  have  revolutionized  ecological  and

evolutionary genomics studies. Precise establishment of orthologs is a critical challenge for RRS,

especially when a reference genome is absent. The proportion of shared heterozygous sites across

samples is an alternative criterion for filtering paralogs, as divergent lineages should be less likely

to  share  heterozygosity.  In  the  prevailing  pipeline  for  variant  calling  of  RRS  data  -

PYRAD/IPYRAD,  maxSH is  an often overlooked parameter  with implications to  detecting and

filtering paralogs according to shared heterozygosity. Using empirical GBS data of two primroses

(Primula alpicola Stapf and Primula florindae Ward) and their putative hybrids, and extra datasets

of Californian golden cup oaks, we explore the impact of maxSH on filtering paralogs and further

downstream analyses.  Our study sheds light on the simultaneous validity and risk of filtering

paralogs using  maxSH, and its significant effects on downstream analyses of outlier detection,

population assignment, and demographic modelling, emphasizing the importance of attention to

detail  during bioinformatics processes. The mutual confirmation between results of population

assignment and demographic modelling in this study suggested maxSH = 0.10 has a potentially

excessive and asymmetrical effect on the removal of truly shared heterozygous sites as paralogs.

These  results  indicate  that  hybridization origin  hypotheses  of  putative  hybrids represented by

results with  maxSH = 0.25 and 0.50 are more credible. In conclusion, we revealed the critical

hazard of paralogs filtration according to sharing heterozygosity at first, so that we propose to use

specific protocols, rather than maxSH, to filter potential paralogs for closely related lineages.
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1. Introduction

Techniques  of  reduced-representation  sequencing  (RRS)  such  as  restriction  site-

associated  DNA  sequencing  (RADseq;  Baird  et  al.,  2008)  and  genotyping  by

sequencing (GBS; Davey et al., 2011) are increasingly prevalent, especially in species

lacking  reference  genomes,  having  revolutionized  ecological  and  evolutionary

genomics studies for their effective generating of genome-wide molecular markers

with a desirable cost (Rodríguez-Ezpeleta et al., 2016; McKinney et al., 2017). Such

markers  allow  inferring not  only  basic  statistics  of  population  genetics,  but  also

phylogenetic reconstruction (e.g. Escudero et al., (2014)), population clustering (e.g.

Ortego  et  al.,  (2017)),  local  adaptation  (e.g.  Pina-Martins  et  al.,  (2019)),  or

demographic inference (e.g. Excoffier et al., (2013)). Nevertheless, RRS has obvious

shortcomings, such as precise establishment of homologous loci; a key challenge for

all  sequencing  techniques,  which  is  particularly  difficult  in  RRS,  since  sequence

similarity  is  often  a  crucial  criterion  for  assembling  demultiplexed  reads  into

orthologous loci  (Ilut  et  al.,  2014; Harvey et  al.,  2015; McCartney-Melstad et  al.,

2019).

Several bioinformatics pipelines and programs have been developed for RRS loci

assembly and data analyses, designed with various algorithms, logic and computer

languages, such as STACKS (Catchen et al., 2013),  IPYRAD (Eaton & Overcast, 2020),
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dDOCENT (Puritz  et  al.,  2014),  RAINBOW (Chong  et  al.,  2012)  and  so  on.  While

considerable attention has been paid to reveal and reduce biases associated with wet

laboratory, sequencing process and species-specific genome properties, biases from

downstream bioinformatics analyses are  less concentrated (but see Illut, et al., 2014;

Mastretta Yanes et al., 2015; Shafer et al., 2017; O’Leary et al., 2018).‐

PYRAD/IPYRAD is  one of  the most  widely-used programs for  quality filtering and

variant calling of RRS data with or without a reference genome, and is superior in

handling paired-end sequencing data and INDEL variation (Eaton, 2014; Eaton &

Overcast,  2020).  In  PYRAD/IPYRAD,  “clustering threshold”  is  a  key parameter  with

respect  to  establishing homology,  with a  default  value 85%. Several  articles  have

soundly evaluated its influence and proposed advice on choosing its optimal value

(Ilut ea al., 2014; McCartney-Melstad et al., 2019). But another important parameter,

perhaps severely overlooked in most studies, is the maximum number (or proportion)

of shared heterozygous sites in a locus. It can be set as both integer and decimal,

abbreviated as maxSH or maxsharedH in PYRAD and max_shared_Hs_locus in IPYRAD

(Eaton, 2014,  Eaton & Overcast, 2020, in order to avoid confusion, we unified its

name as maxSH hereafter). This parameter allows identification of paralogs according

to the extent of shared heterozygosity across samples. It is worth mentioning that, in

PYRAD the default value of  maxSH is 4, which means  heterozygous site shared by

more than four individuals will  be removed. While in  IPYRAD  the default  value of

maxSH is  0.50  (50%),  allowing  half  of  tested  samples  to  share  any  given

heterozygous site.  Given bi-allelic SNPs were only generated by mutation, sharing
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heterozigosity among species could only be originated by incomplete lineage sorting

(ILS), gene flow and sharing gene/genome duplication (Spofford, 1969;  Innan and

Kondrashov,  2010;  Fijarczyk and  Babik,  2015).  On  this  basis,  highly divergent

species (lineages) should be less likely to share heterozygous sites regarding their

respective evolutionary history, and heterozygous sites simultaneously presented in

many  samples  are  more  likely  to  represent  clustering  of  paralogs  with  a  fixed

difference rather than a true heterozygous site (Eaton et al. 2015; Eaton & Overcast,

2020). PYRAD was primitively designed for phylogenetic reconstruction, thus extreme

low default  value are benefit and reasonable. However,  numerous studies have used

this default  value or some  extreme low values to generate datasets for population

genomics study on close related lineages (e.g. Cavender-Bares et al., 2015; Eaton et

al. 2015; Ortego et al.,  2017; Tonzo et al.,  2020). Closely related lineages possess

relatively high proportion of heterozygous sites (Sota and Vogler 2003, Lischer et al.,

2014).  Besides,  the  high  probability  of  introgression, hybridization,  and  sharing

ancestral  polymorphism can  potentially  contribute  to  extensively  sharing

heterozygosity among close lineages. Therefore, truly shared heterozygous sites will

be  simultaneously  filtered  if  we  set  a  lower  threshold  of  maxSH in  population

genomics studies. In this regard, tuning  maxSH is essential for unbiased inference,

and its  influence on downstream analyses  is  to  be expected.  However,  it  remains

undiscovered to what extent  maxSH affects such downstream analyses and further

biological inference in population genomics frameworks.
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We mainly  performed our empirical test on the influence of  maxSH values using

two distylous primroses, Primula alpicola Stapf and P. florindae Ward co-occuring in

the Shergyla mountains, southeast of Qinghai-Tibet region. Primula L. (Primulaceae)

is arguably a high-profile genus for heterostyly since Darwin’s seminal book (Darwin,

1877),  exhibiting  extreme  species  richness  and  diversity  in  the  eastern  Sino-

Himalayan  region  (Richards,  2003).  Although  frequent  hybridization  and

introgression  have  been  considered  critical  factors  for  the  complex  phylogenetic

relationships within  Primula (Richards, 2003; Ren et al., 2018), only a few natural

hybridization events were well documented in the complex’s distribution center (see

Zhu et al., 2009; Ma et al., 2014; Xie et al., 2017). Natural hybridization between P.

alpicola and P. florindae was reported according to field observations by Ward, and

artificial crossing is compatible in the garden (Richards, 2003). These two species are

somewhat difficult to distinguish in sympatry due to morphological similarity, but still

can  be  identified  according  to  some  critical  differences  on  leaves  and  flowers.

Moreover, their putative hybrids have been identified in middle elevation area of the

Shergyla mountains, where  P. alpicola and  P. florindae share most pollinators with

relative long flowering phenology overlapping (personal observation).

In this work, we sequence two primrose species and their putative hybrids using

GBS to  mainly  disentangle  1)  whether  maxSH is  effective  on  handling  potential

paralogs; 2) How, and to what extent could downstream bioinformatics analyses be

influenced regarding different maxSH thresholds; 3) whether biological inference can

tolerate potential excessive removal of heterozygous sites resulting from low maxSH
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thresholds. In order to further verify the influence of maxSH on population genomics

studies,  we  also  conducted  extra  demographic  modelling  for  another  datasets

discussing the introgression between two Californian golden cup oaks.

2. Materials and Methods

2.1 Sample collection

In 2015 and 2018, we sampled P. alpicola and P. florindae in the putative hybrid zone

(elevation  =  3672.71  m,  latitude  =  29.6704°N,  longitude  =  94.7157°E)  from the

Shergyla mountains. We collected ten individuals of P. alpicola, nine individuals of P.

florindae, and fifteen putative hybrids identified by their flower color and leaf shape

traits  from this  zone.  Furthermore,  three  P. sikkimensis individuals  collected from

higher elevation of Shergyla mountains were sampled as outgroup species. Fresh leaf

samples were quickly dried and stored with silica gel until DNA extraction.

2.2 DNA extraction and sequencing

Total DNA extraction followed a modified CTAB protocol (Doyle & Doyle 1987).

The purity and amount of all extracted DNA was assessed using Nanodrop 1000 and

Agarose gel. “Genotyping by sequencing” (GBS) technique was used for genotyping

DNA samples and obtaining high density SNPs. In brief, DNA was double digested

using  MseI+HaeII restriction enzymes, and ligated Illumina adapters and barcodes.

After libraries were constructed, Qubit 2.0 was used for preliminary quantification,

then DNA samples were uniformly diluted to about 1 ng/μl. At last, libraries were
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pooled, and then paired-end sequenced following the standard protocol using Illumina

HiSeq PE150 platform by Novogene Bioinformatics Technology Co., Ltd., Beijing,

China (www.novogene.cn).

2.3 Bioinformatics and data filtering

We assembled  de novo loci and called SNPs using  IPYRAD v.0.7.30.  We kept non-

target parameters of IPYRAD as default value for prescriptive quality control steps, then

designed parameter assemblies to test and compare their influence on downstream

analyses: 1) We clustered our quality-filtered reads considering three thresholds: 85%,

90%  and  95%;  2)  As  maxSH was  the  main-tested parameter,  we  set  it  to  two

frequently adopted values: 0.10 and 0.50 plus an intermediate value of 0.25. Complete

information for each parameter assembly is available in supplemental files as datafile

S1. In order quantify filtered paralogous loci, we used the output file “stats.txt” from

IPYRAD step 7 following McCartney-Melsted et al. (2019) to plot the percentage of

flagged  paralogs

([filtered_by_max_indels+filtered_by_max_snps+filtered_by_max_shared_het+filtere

d_by_max_alleles]/total_prefiltered_loci).  We  further  filtered  processed  data  for

keeping only biallelic SNPs, requiring a minimum allele frequency (MAF) > 0.03,

and setting missing data rate (proportion of samples does not contain data at a given

SNP) as 60% using  VCFTOOLS v.0.1.14 (Danecek et al.,  2011) since the number of

retained SNPs sharply decreased with further missing data constrains.  In the final

step, we kept only the center SNP per locus so that we can minimize the effect of

linkage  disequilibrium  using  a  python  script  “vcf_parser.py”
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(https://github.com/CoBiG2/RAD_Tools/blob/master/vcf_parser.py)  as  of  commit

“0893296”. In total, 9 datasets were created representing assemblies resulting from all

parameter combinations. Each dataset was entitled as the combination of the initial of

tested parameter (clustering threshold and maxSH) and their representative value, like

c85m10.

2.4 Outlier detection

Outlier  SNP detection was performed to obtain unbiased population structure  and

further  demographic  modelling.  We  detected  outlier  loci  using  two  programs:

BAYESCAN v.2.1 (Foll & Gaggiotti, 2008) based on Bayesian approach and R package

pcadapt v.4.3.2 (Luu et al., 2017) based on principal component analysis (PCA). For

both  programs,  individuals  were  preliminarily  grouped  according  to  sampling

categories. BAYESCAN was run using 20 pilot runs of length 5,000, a burn-in length of

50,000, a main output iterations of 10,000, a thinning interval of 10, and a detecting

threshold of 0.05. For running pcadapt, we firstly evaluated the number of principal

components  using “score  plot”  wrapped in  pcadapt due  to  the  poor  resolution of

Cattell’s graphic rule in our case, a list of candidate SNPs under an expected FDR

α = 0.05 were identified as outliers following a standard pcadapt workflow. Outliers

identified  by  either  program  were  excluded  from  population  structure  inference

analyses.

2.5 Population structure and hybrids identification
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0

We then inferred population genetic structure and preliminarily identified hybrids for

each data set using STRUCTURE v.2.3.4 (Pritchard et al., 2000) wrapped in the program

Structure_threader v.1.3.4 (Pina-Martins et al., 2017). This program is characterized

by  parallelizing  multiple  runs  of  genetic  clustering  software  and  automatically

assessing the best  K as well as drawing the “meanQ” plots. We used filtered SNPs

with 20 independent runs for K values from 1 to 6 to estimate the optimal number of

clusters with a burn-in of 100 000, followed by 200 000 Markov chain Monte Carlo

(MCMC) repetitions.  The best  K was estimated according to the widely used ΔK

method  (Evanno  et  al.,  2005)  implemented  in  Structure_threader.  Principal

component  analysis  was  also  performed  using  an  R  script  “snp_pca_static.R”

(https://github.com/CoBiG2/RAD_Tools/blob/master/snp_pca_static.R) as of commit

“bb2fc45”, in order to improve presentation, we slightly tweaked this script for our

case regarding colours.

2.6 Demographic modelling

We  used  FASTSIMCOAL2 v.2.6.0.2  (Excoffier  et  al.,  2013)  for  comparing  different

demographic  models  via  coalescent  simulations.  Because  demographic  modelling

depends  on  well-defined  population  structure,  three  populations  (demes)  defined

based on  STRUCTURE results were prepared for modelling. The folded joint SFS and

unbiased  estimation  of  allele  frequency  were  performed  using  the  Python  script

easySFS.py (https://github.com/isaacovercast/easySFS)  as  of  commit  “aaf80ea”,

which can effectively downsample populations for generating input “.obs” files for

FASTSIMCOAL2.  Because  no  invariable  loci  were  involved  in  our  SFS,  we  enabled
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1

demographic modelling by introducing a calculated effective population size of  P.

alpicola (Papadopoulou & Knowles, 2015; Ortego et al., 2017). As  Ne =  π/4μ, we

inferred average mutation rate per site per generation  μ from  Arabidopsis thaliana

(Nordborg et  al.,  2005)  following Gossmann et  al.  (2012)  as  it  is  the  genetically

closest species with known μ value. π value was computed in DNASP v.6.12.03 (Rozas,

et  al.,  2017)  using  “.allele.loci”  file  containing  both  polymorphic  and  non-

polymorphic  loci  generated  by  IPYRAD.  Average  generation  time  was  set  as  1  yr

(personal observation). Finally, we roughly bounded upper limit of divergence time

between  P.  alpicola and  P.  florindae as  25  Ma  (million  years  ago)  according  to

estimated time when Primula diverged from Soldanella (de Vos et al., 2014).

To  disentangle  how  putative  hybrids  speciated,  three  models  were  designed,

respectively describing putative hybrids diverged from P. florindae, putative hybrids

diverged from P. alpicola, and putative hybrids originated from hybridization between

P. alpicola and P. florindae, considering post-divergence asymmetric gene flow (Fig.

S1). Meanwhile, three alternative models describing similar divergence scenarios but

without gene flow were also prepared as comparison (Fig. S1). Each model was run

100  independent  replicates  following  250,000  simulations  with  60  expectation-

conditional  maximization  (ECM) cycles,  a  stop  criterion  of  0.001,  and  zero  SFS

removed using FASTSIMCOAL2. Akaike’s information criterion (AIC) was used to select

the best model. The replicate with the maximum estimated likelihood of each model

was selected for AIC and ΔAIC calculation.
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Because Ortego et al. (2017) has conducted the comparison of genetic clustering

results  on  different  parameter  assemblies  of  both  stacks  and  IPYRAD,  we  mainly

performed the comparison of coalescent analyses results among the STACKS datasets

author  used  for  his  downstream analyses  and  two available  PYRAD datasets  with

maxSH = 0.1 available as supplementary material. We named two PYRAD datasets as

oak_c85 and oak_c90 respectively according to their  clustering threshold,  and the

STACKS datasets as oak_stacks. As demographic modelling has been done for STACKS

datasets  (Ortego et  al.,  2017,  Table1,  Table2,  Fig 2).  For  two  PYRAD  datasets,  we

followed Ortego’s filtering steps to extract the unlinked neutral bi-allelic SNPs, then

we used  easySFS.py for downsampling and generating input files for  FASTSIMCOAL2

containing folded joint  SFS information,  respectively.  The  alternative  models  and

execution of  FASTSIMCOAL2 were also in line with Ortego et al. (2017). At last, we

compared the difference of best model and corresponding parameter estimates among

these three datasets. 

3. Results

3.1 Sequencing output and variation in data processing

The number of usable paired-end sequence reads ranged from 3,108,740 to 7,799,062

with an average of 5,291,571 per sample (SD=1,063,312). Total loci assembled by

IPYRAD increased  with  both  clustering  threshold  and  maxSH values,  ranging from

33,328 to 88,630 (Table 1). Total SNPs called primarily by IPYRAD varied similarly to

total  loci,  from 226,965  to  605,829,  with  an  average  of  422,815  (Table  1).  The
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3

number of filtered SNPs also varied similarly, ranging from 5276 to 24166 (Table 1),

but  its  differences  among  different  maxSH values  are  further  enlarged  despite

changing clustering thresholds.

Changing  either  clustering  threshold  or  maxSH values  effectively  alters  the

proportion of flagged paralogs, suggesting their remarked association to detect and

filter potential paralogs (Fig. 1). The percentage of flagged paralogs steeply decreased

(~3%  to  ~5%)  when  changing  maxSH from  0.10  to  0.25,  and  then  tend  to  be

approximate (< 0.8%) between maxSH = 0.25 and 0.50. Changing clustering threshold

values from 0.85 to  0.95 resulted in  a  stepwise reduction of  flagged paralogs.  In

dataset  c85m10, more than 25% of assembled loci were identified as paralogs, yet

c95m50 contained ~12% flagged paralogs (Fig. 1).

BAYESCAN and pcadapt showed a large discrepancy in detecting loci under selection:

the mean number of detected outliers of all datasets was about 21 for BAYESCAN and

1036 for pcadapt. In addition, the number of detected outliers increases with maxSH

value  for  pcadapt  except  for  datasets  with  the  highest  clustering  threshold,  but

decreases for BAYESCAN in all datasets. It is also worth noting that BAYESCAN detected

no outliers on 4 of 6 parameter assemblies with maxSH = 0.25 and 0.50, and outliers

common to both programs were only detected when maxSH = 0.10 (Table 1).

After all filtering steps, the final number of neutral SNPs used for genetic clustering

and  demographic  modelling  ranged  from 5002  for  c85m10 to  22126  for  c95m50

(Table 1).
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3.2 Variation in population assignment

Most bayesian clustering results confirmed that samples labeled as hybrids exhibited a

genetic mixture of P. alpicola and P. florindae, especially for maxSH values of 0.25

and 0.50 (Fig. 2D-I). Additionally, differences between results of maxSH = 0.25 and

0.50  were  relatively  small  when  keeping  clustering  threshold  constant.  However,

hybrid ancestry proportion of P. florindae was relatively increased in datasets with the

lowest  maxSH (Fig  2A-C).  Particularly,  five  putative  hybrids  were  genetically

clustered to P. florindae for c95m10 (Fig. 2C). For all bayesian clusters, the optimal K

value is 2 (datafile S2). Interactive version of plots for all K values were all available

in supplemental files as datafile S3.

PCA results were roughly consistent with those obtained by the bayesian clustering

approach, especially the similarity between plots with  maxSH = 0.25 and 0.50 (Fig.

3D-I).  Besides,  when  maxSH >  0.10,  PCA results  supported P.  alpicola and  P.

florindae as  genetically  separated  clusters,  and  samples  of  putative  hybrids  were

located between  P.  alpicola and  P.  florindae,  indicating their  genetically  admixed

background.  Unexpectedly,  these  datasets  collectively  segregated  four  putative

hybrids from other samples marked along PC1 or PC2. By contrast, part of putative

hybrids always showed their genetic similarity to  P. florindae along at least one PC

when maxSH = 0.10 (Fig. 3A-C), particularly, plot of c95m10 distinctively exhibited a

fusion of genetic clusters (Fig. 3C).

3.3 Variation in demographic modelling

14

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295



1
5

Choice  of  maxSH showed  dramatic  impact  on  demographic  modelling  (Fig. 4).

Results of modelling were directed to two drastically different scenarios, therefore, all

results of parameter assemblies with maxSH = 0.25 and 0.50 inferred putative hybrids

were speciated from hybridization between P. alpicola and P. florindae accompanied

by interspecific gene flow (Model C1; Fig. 4D-I; Table s4-s9). While the best model

of three datasets with maxSH = 0.10 alternatively fit the scenario that putative hybrids

were diverged from P. florindae with post-divergence asymmetric gene flow (Model

A1;  Fig. 4A-C; Table s1-3). Additionally, for datasets  c95m10, the model indicating

putative  hybrids  were  speciated  from  hybridization (model  C1,  Fig.S2)  was

statistically equivalent to the best model to some extent (ΔAIC = 3.85, Burnham &

Anderson, 1998).

Demographic estimations also varied dramatically between datasets, including split

time, effective population size, proportion of migrants, and migration rates (Fig. 4).

Seven of nine assemblies indicated P. alpicola and P. florindae diverged more than 20

Ma (Fig. 4B, D-I), while c85m10 suggested they split about 13.5 Ma (Fig. 4A).. For

the speciation time of putative hybrids, three models with maxSH = 0.50 referring to

hybridization origin with gene flow all directed to near 0.18 Ma (Fig. 4G-I), while the

rest  showed that  speciation time of putative hybrids varied from 0.04 to 0.19 Ma

regardless of ancestral lineage. Unlike split time, effective population size inferences

were irregularly variable, yet all results suggested putative hybrids hold the smallest

effective  population  size.  Besides,  eight  of  nine  models  indicated  expansion  of
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6

effective population size at first, then coming to the recent constriction.  P. florindae

contributed a higher proportion of ancestry (from 0.62 to 0.75) to the hybrid lineage

than P. alpicola according to five of six models referring to hybridization origin with

gene  flow  (Fig. 4E-I),  only  c85m25 supported  both  P.  florindae  and  P.  alpicola

contributed the same proportion (0.5) to the hybrid lineage (Fig. 4D).. Interestingly,

regardless of how putative hybrids originated, All models with gene flow got higher

AIC scores compared to models without gene flow in the same parameter assembly,

and  eight of them shared a similar gene flow pattern:  weak  or moderate (only in

c95m10)  continuous gene flow between  P. alpicola and  P. florindae ;  asymmetric

gene flow between P. alpicola and putative hybrids, varying from moderate to strong;

moderate gene flow from putative hybrids to P. florinade, while the reverse was subtle

(Fig. 4A-E, 4G-I). Yet c95m25 supported a different gene flow pattern: moderate gene

flow from  P. alpicola to  P. florindae was supported. Besides, contrary to previous

pattern, gene flow from putative hybrids to P. florindae was subtle, while the reverse

was strong (Fig. 4F). It is also worth mentioning that almost all results of parameter

estimation for c95m25 were distinct from other datasets.

2.7 Verification from PYRAD datasets of Californian golden cup oaks

The best model for both PYRAD  datasets with maxSH = 0.1 is Model B1 (Table s10,

s11), indicating the southern lineage of  Quercus chrysolepis was diverged from  Q.

tomentella. which  is  the  second-best  model  for  coalescent  results  of  oak_stacks.

Additionally, ModelC1 representing hybridization origin was even not the second-best

model for both oak_c85 and oak_c90. Additionally, for oak_c90, modelA1 indicating
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the southern lineage of Q. chrysolepis was diverged from the northern lineage of Q.

chrysolepis was statistically equivalent to the best model (Model B1) to some extent

(ΔAIC = 2.28, Burnham & Anderson, 1998).

The  advent  of  reduced-representation  sequencing  (RRS)  has  definitely  facilitated

studies on ecology and evolution in depth (Twyford & Ennos, 2012; Andrews et al.,

2016). However, complex software and absence of standard analyses pipelines could

mislead the analyses process, requiring conclusions to be drawn with caution  (Shafer

et  al.,  2017).  Although  various  studies  are  dedicated  to  exploring  biases  from

bioinformatics analyses processes, more attention should be paid to each and every

detail, due to their potentially immeasurable influence (Gautier et al., 2013; Arnold et

al., 2013; Shafer et al., 2017). The comparison of different values  of  maxSH in this

study showed that an undesirable filtration of shared heterozygous sites can have a

large impact on downstream analyses in a population genomics framework,  altering

the final biological inference. Since we carried out this research using empirical data,

parts of our results could merely reflect some unique characteristics of the two tested

datasets. However,  the  consistent  influence  of  maxSH  presented  by  two  different

datasets, especially on demographic modelling, has bolstered our confidence to draw

a conclusion that a strict  maxSH threshold is improper when conducting population

genomics analyses. 

In this study, we filtered missing data using moderate thresholds. Changing missing

data rate could inevitably bring variations into downstream analyses, but for this first

approach, we avoided using too many variables, which may result in focus reduction.
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In  fact,  although  a  handful  of  studies  have  discussed  its  influence,  dealing  with

missing data remains controversial (Huang and Knowles, 2016; Paris et  al.,  2017;

Shafer et al., 2017; Yi and Latch, 2021).

4.1 Influence of maxSH and its interactions with clustering threshold

Identification of paralogs has unendingly been a challenge we have to cope with,

because it can certainly act, as demonstrated here, on almost all downstream analyses,

for example, outlier detection (Table 1), phylogenetic reconstruction (Fitz-Gibbon et

al., 2017; McCartney Melstad et al., 2019), demographic inferences (‐ Fig. 4; Shafer et

al., 2017), and to some extent, population clustering (Fig. 2 & 3; Rodríguez Ezpeleta‐

et al., 2016). For the increasingly prevalent PYRAD/IPYRAD, McCartney Melstad et al.‐

(2019) have illustrated that clustering thresholds strongly affect paralogs filtering and

subsequent  phylogenetic  resolution  in  detail.  In  this  study,  we  confirmed  its

significance on filtering paralogs and additionally estimated its influence on typical

population  genomic  analyses.  More  importantly,  we  demonstrated  that  an

underestimated parameter  of  PYRAD/IPYRAD,  maxSH, is  as  influential  as  clustering

threshold on handling potential paralogs. A low threshold of  maxSH has remarkably

increased  the  proportion  of  flagged  paralogs  in  the  tested  data  set.  What’s  more,

downstream analyses were all significantly impacted by  maxSH,  since variation of

population assignment and demographic modelling were far more closely associated

with  maxSH,  rather than clustering threshold. This could be  mainly  interpreted by

their totally different rules for filtering paralogs. For clustering threshold, paralogs are

identified via comparison of sequencing similarity, a lower threshold could lead to
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underestimation of the number of loci and thus undersplitting (Rodríguez Ezpeleta et‐

al., 2016). However, biases from undersplitting are somewhat unpredictable, as we

cannot  know what  such information represents.  By contrast,  a  lower  threshold of

maxSH can directly filter heterozygous sites across many samples, which should only

be originated from interspecific gene flows or sharing ancestral polymorphism if it is

a  true  heterozygous  site (Fijarczyk and  Babik,  2015).  This  could  explain  why

changing  maxSH can  strikingly  alter  the  choice  of  the  best  model  for  coalescent

simulations,  while  clustering  thresholds  mainly  impacted  parameter  estimates.

Besides, other downstream analyses should also clearly be more vulnerable once we

improperly filtered these informative sites as paralogs.

Besides the different expected behaviors of clustering threshold and maxSH, there

may  also  be  some  unexpected  interactions  between  them.  Oversplitting  due  to

extremely high clustering thresholds has been demonstrated to cause a split between

true  allelic  variants  of  orthologous  loci  into  putatively  separate  loci  (McCartney-

Melsted et al., 2019). On the one hand, exorbitant request of sequence similarity by

high  clustering  threshold  can  directly  limit  the  proportion  of  heterozygosity  for

assembled  loci.  On  the  other  hand,  a  low  maxSH value  can  further  exclude  loci

regarding dissimilarity components.  Thus interactions between clustering threshold

and  maxSH can lead to considerable but unaccounted decrease of genetic distance

among  lineages,  which  could  explain  the  fusion  of  genetic  clustering  intensively

represented by PCA result for  c95m10. It is also strongly supported by  STRUCTURE

results of golden cup oaks. in the STACKS datasets, part of individuals of Q. tomentella
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in CAT population and most individuals of Q.chrysolepis in MOJ, LAG, BER, GAB,

FIG,  and  HAS populations  exhibited some  extent  genetic  admixture.  While  both

proportion of individuals exhibiting genetic admixture and the extent of admixture has

decreased  in  two  PYRAD datasets,  and  higher  clustering  threshold  has  resulted  in

heavier decrease (Ortego et al., 2017, Fig. S4). Extending this study to other datasets

would be helpful for confirming how prevalent the issue really is. Yet it has already

implied an optimal clustering threshold is urgent, as it is the first and great influential

filtering step in PYRAD/IPYRAD.

Handling  heterozygous  sites  has  frequently  been  neglected  for  RRS  data

processing.  On the  one  hand,  most  studies  do  not  clearly  exhibit  information  on

whether  heterozygous sites  were dropped or  retained.  On the other  hand,  phasing

between loci is almost impossible when a reference genome is unavailable (Garrick et

al., 2010; Lischer et al., 2014). As a consequence, heterozygous sites are improperly

filtered or totally excluded. However, multidimensional information of introgression

and incomplete lineage sorting from heterozygous positions is undoubtedly precious

for population genomic studies tackling closely related lineages. Our study revealed

the fathomless influence from processing heterozygous sites at first, and illustrated

filtering paralogs according to shared heterozygosity is risky and unreliable.

4.2 Interpretation of divergent biological inference

Clustering threshold and maxSH biological inference were determined by tuning said

parameters,  with special  emphasis on  maxSH.  Individuals labeled as hybrids were
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genetically admixed in most cases according to  STRUCRURE and PCA. These results

are  in  agreement  with  their  intermediate  morphology,  indicating  potential

hybridization origin of putative hybrids. Demographic models with maxSH = 0.25 and

0.50 supported a hybridization origin of putative hybrids scenario. However, a low

maxSH value shifts this conclusion to a putative divergent origin, especially when

combined with high clustering threshold values.  Given that  patterns  of  gene flow

across eight modelling results collectively indicated gene flow from putative hybrids

to P. florindae is always several times higher than to P. alpicola, putative hybrids are

less likely to share heterozygous sites with P. alpicola. When we set a small maxSH

value, those limited shared heterozygous sites have to be preferentially filtered, while

on the other hand, shared heterozygous sites between hybrids and P. florindae can be

more  likely  retained.  These  results  were  also  partially  verified  by  the  coalescent

results  for  golden  cup  oaks.  The  best  model  of  STACKS datasets  without  filtering

sharing  heterozygous  sites  indicated  hybrid  origin  of  the  southern  lineage  of

Q.chrysolepis,  while two  PYRAD datasets collectively tend to the model describing

Q.chrysolepis was diverged from  Q.tomentella with post-divergence gene flow.  As

such,  the  mutual  confirmation  between  population  assignment  and  demographic

modelling illustrated that extreme  maxSH has brought excessive and asymmetrical

removal of truly sharing heterozygous sites as paralogs in this study. We thus tend to

infer putative hybrids to be originated by hybridization between  P. alpicola and  P.

florindae, with an asymmetrical pattern of gene flow.
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Hybridization could be widespread and play vital  role  on the diversification of

Primula (Schimidt-Lebuhn et al.,  2012; Boucher et al.,  2016; Keller et  al.,  2021).

Besides, increasing evidences have proofed the existence of multiple gene/genome

duplication and their significance on the origin of heterostyly, the most famous feature

of  Primula  (Li et al.,  2016; Huu et al.,  2020; Potente et al.,  2022). On this basis,

sharing heterozygous sites among close related Primula species could contain plenty

of both paralogs and truly heterozygous sites.  It  could be the reason why a harsh

maxSH threshold  can  sharply  reduce  the  number  of  retained SNPs.  While  it  also

suggested  that  we  should  depend  on  other  specific  ways  to  filter  paralogs  when

performing population genomics studies on Primula and other similar taxa.

ise e

4.3 Differentiated behavior of similar pipelines and approaches

The flourishing of sequencing technology has prompted software development around

all aspects of downstream analyses. Yet differences between underlying algorithms

and logic of different software can lead the same analysis to divergent inference. For

example,  Chen  et  al.  (2021)  demonstrated  incredibly  different  behaviors  of  two

mainstream  lines—McDonald-Kreitman  (MK)  test  and  PAML  test—for  positive

selection  detection.  Considering  outlier  removal  is  not  only  prior  for  inferring

unbiased population structure and estimating demographic history, but also crucial for

tackling  adaptive  divergence,  numerous  approaches  have  been  developed  for
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detecting outliers, mostly lending Fst-related statistics as criteria, such as BAYESCAN,

OUTFLANK (Whitlock & Lotterhos 2015),  SELESTIM (Vitalis et al.,  2014) and so on.

Unlike them,  pcadapt identifies outliers regarding their relationship with population

structure  ascertained  with  principal  component  analysis.  In  this  study,  Fst  based

BAYESCAN and PCA based pcadapt showed distinct efficiency on outlier identification.

pcadapt could always flag a large number of loci under selection, while  BAYESCAN

conservatively detected quite a few number of outliers, furthermore, for only part of

parameter assemblies. Likewise, large discrepancy and limited intersection of outliers

detected  by  BAYESCAN  and  pcadapt  have  been  elaborated  by  several  studies  (e.g.

Kotsakiozi et al., 2017, Bekkevold et al., 2019). Nevertheless, quite few studies took

interpretation of their discrepancy into consideration. Luu et al. (2017) pointed out the

power of BAYESCAN decreased sharply when admixed individuals are included, which

has  been  verified  by  our  results  and  partially  explains  the  distinct  behavior  of

BAYESCAN and pcadapt in this study. Except for the influence of admixed individuals,

maxSH has resulted in extra difference for these two approaches. Turning up maxSH

can  strikingly  increase  the  number  of  total  SNPs,  while  it  can  also  decrease  the

genetic distance (Fst value) among populations. Thereby those Fst methods would  be

more vulnerable to tuning maxSH. This could mainly explain the decrease of detected

outliers  when  increasing  maxSH and  the  absence  of  outliers  in  some  parameter

assemblies when  maxSH = 0.25 and 0.50, while non-sensitive  PCADAPT will detect

more outliers along with the increasing total SNPs.
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STRUCTURE and  PCA  are  some  of  the  most  popular  approaches  for  tackling

population assignment in population genetics/genomics. In this study, results of these

two approaches are mostly concordant. Yet, we also find a number of differences on

how they respond to variations of parameter assemblies. Tuning maxSH has brought

greater  impact  on  PCA,  because  when  maxSH =0.10,  part  of  putative  hybrids

constantly can not separate from or P. florindae or P. alpicola in any PCs. Yet when

clustering  threshold  =  0.85  and  0.90,  putative  hybrids  still  kept  their  genetic

admixture  in  STRUCTURE.  According  to  the  identity  of  putative  hybrids.  Genetic

clustering by STRUCTURE could have offered robuster results in this study. In c95m10,

both STRUCTURE and PCA have showed the fusion of genetic clusters,This could be a

result of oversplitting effect on reducing genetic distances among populations due to

extreme clustering threshold values (Harvey et al., 2015; Rodríguez-Ezpeleta et al.,

2016). At last, four putative hybrids were repetitively drifted to others. According to

their higher missing data rate than other putative hybrids, we inferred their irregular

drift should stem from the impute limitations for missing data in PCA (Yi and Latch,

2021).

Demographic  modelling  was  most  vulnerable  to  maxSH variation  among  all

population genomics analyses in this study. As we performed demographic modelling

using FASTSIMCOAL2, the filtration of sharing heterozygous sites can intensively alter

site frequency spectrum, the most important impute information for modelling. Thus,

estimation  of  the  best  model  would  be  close  related  to  tuning  maxSH.  Taking

consideration of increasing popularity and significance of coalescent simulation in
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population  genomics,  only  a  handful  of  studies  shed light  on  how bioinformatics

processes affect demographic modelling or inference (Harvey et al., 2015; Shafer et

al.,  2017).  Based  on  our  results,  we  would  like  to  highlight  again  the  extreme

importance  of  precise  establishment  of  orthologs  before  performing  demographic

modelling for reliable biological inference.

Conclusions

Overall,  this  study  highlights  the  feasibility  but risk  of  tuning  maxSH values  on

filtering paralogs. Our results illustrate its remarkable effect on almost all downstream

analyses  within  a  population  genomics  framework.  According  to  the  mutual

confirmation between population assignment and demographic modelling, we inferred

that maxSH = 0.10 has brought excessive and asymmetrical removal of truly sharing

heterozygous sites as paralogs into this study. On this basis, we tend to approve the

hybrid  origin  of  putative  hybrids  between  P.  alpicola and  P.  florindae with  an

asymmetrical gene flow pattern deserving further investigation.

Here we give some suggestions on how to minimize the influence of maxSH from

excessive and asymmetrical removal of heterozygous sites. Foremost, no single value

could be expected for maxSH to be universal for all studies. Setting optimal clustering

threshold following McCartney-Melstad et al (2019) would be beneficial as we have

demonstrated the amplified biases from interactions between clustering threshold and

maxSH.   Then no  matter  what  kind  of  analyses  are  arranged  for  closely  related

lineages, especially those with potential hybridization or introgression, one should not

rely on  maxSH for filtering paralogs, when we use  PYRAD to generate datasets for
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population genomics study, do not forget to turn up this parameter as the number of

half samples (same as the default value of IPYRAD). And if we use IPYRAD, just keep it

as default value.
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Tables

Table 1 Summary of IPYRAD output and outlier detection of different parameter assemblies

Parameter

assemblies
Total loci

Total

SNPs

Filtered

SNPs

BAYESCAN

outliers

pcadapt

outliers

Outliers by

both

Neutral

SNPs

c85m10 33328 226965 5276 25 267 18 5002

c85m25 45671 351147 14374 0 816 0 13558

c85m50 47652 371317 16346 0 836 0 15510

c90m10 44783 307539 7076 33 342 21 6722

c90m25 58940 453269 17362 0 876 0 16486

c90m50 61046 475112 19456 0 1130 0 18326

c95m10 70321 427733 10870 73 1948 60 8909

c95m25 86620 586421 22187 36 1090 0 21061

c95m50 88630 605829 24166 25 2015 0 22126

Notes:  Total  loci  and  Total  SNPs  were  generated  by  IPYRAD with  at  least  20%  individuals

containing data at a given locus; Filtered SNPs were generated by total SNPs further filtered by

missing data, minimum allele frequency and keeping only the center one SNP per locus; BAYESCAN

outliers, outliers detected by the software BAYESCAN;  pcadapt outliers, outliers detected by the R

package pcadapt; Neutral SNPs, filtered SNPs with detected outlier removed.
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Figure Legends

Fig. 1. Proportion of  loci  flagged as  paralogs and filtered by  IPYRAD.  Results  are

grouped according to clustering threshold in order to highlight differences of flagged

paralogs resulted from maxSH.

Fig. 2. Comparison of genetic clustering by the bayesian clustering approach for  P.

alpicola,  P.florindae and  their  putative  hybrids  implemented  in  the  program

STRUCTURE, Only K = 2 is shown here for being the Best K value. Each column

shared the same clustering threshold and each row shared the same maxSH value. In

every plot, each individual is represented by a vertical bar for every independent plot

and color composition of each bar is referred to the individual’s ancestry.

Fig. 3. Comparison of genetic clustering by PCA approach for P. alpicola, P. florindae

and their putative hybrids. Each column shared the same clustering threshold and each

row shared the same maxSH value. In every plot, each individual is represented by a

dot and dots are colored according to sampling classification.

Fig. 4. The optimal demographic model for nine tested parameter assembly indicated

by AIC and ΔAIC computation. Value of estimated parameters for the best model are

showed in each plot, including divergence time (TDIV), admixture time (TADMIX) for

admixture model, effective population size (θ), rates of gene flow (m), and proportion

of lineages transfer (α).
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Support Information

Fig. S1. Alternative demographic models for exploring the origin of putative hybrids.

The only difference between upper three models and lower three is the existence of

interspecific  gene  flow.  Parameter  estimation  include  divergence  time  (TDIV),

admixture time (TADMIX) for admixture model, effective population size (θ), rates of

gene flow (m), and proportion of lineages transfer (α).

Fig. S2. Results  of genetic clustering by the BAYESCAN clustering approach for

p95_60_10 after removing six samples totally similar to P. florindae in genetics. Only

K = 2 is shown here for being the Best K value. Each individual is represented by a

vertical bar for every independent plot and color composition of each bar is referred to

the individual’s ancestry.

Fig. S3. Demographic model statistically equivalent to the best model for p95_60_10.

Value  of  estimated  parameters  includes  divergence  time  (TDIV),  admixture  time

(TADMIX) for admixture model, effective population size (θ), rates of gene flow (m),

and proportion of lineages transfer (α).

Table S1. Comparison of demographic models for c85m10.

Table S2. Comparison of demographic models for c90m10.

Table S3. Comparison of demographic models for c95m10.

Table S4. Comparison of demographic models for c85m25.

Table S5. Comparison of demographic models for c90m25.

Table S6. Comparison of demographic models for c95m25.

Table S7. Comparison of demographic models for c85m50.

Table S8. Comparison of demographic models for c90m50.

Table S9. Comparison of demographic models for c95m50.

datafile S1. Complete information of each parameter assembly for running IPYRAD.
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datafile S2. The best K estimation for each datasets according to ΔK method.

datafile S3. Interactive version of plots of STRUCTURE results for all K values. 
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