20 research outputs found

    Heterotopic space characteristics of urban village in China: Take Guandongdian district in Beijing as an example

    Full text link
    [EN] For the first time in the history of China, more of its mainland population are living in cities than in rural villages. The land acquisition and real estate development have caused rapid disappearance and decline of a large number of traditional villages, resulting in "urban villages" in China. They seem chaotic, but contain rich and colorful social life. The living environment is really harsh, but people always maintain close relationship with each other. They are different from neither the modern urban nor traditional villages, but they have their own unique vitality. Such heterogeneous space is always a symbol of historical change and cultural collision which, according to the French philosopher Michel Foucault, can be called Heterotopias. In order to study this heterotopic phenomenon, the triangular area of Guandongdian district in Beijing has been chosen as the object of this case study. With the in-depth investigation of interviews, observation, statistics and sketches, this paper is trying to interpret the characteristics of the heterotopic state of the urban village from three aspects of social form, urban morphology and architectural feature. Eventually, in order to keep the complexity and diversification of urban village, several strategies are put forward for reference to future transforming practice.Lu, T.; Li, J.; Peng, N. (2018). Heterotopic space characteristics of urban village in China: Take Guandongdian district in Beijing as an example. En 24th ISUF International Conference. Book of Papers. Editorial Universitat Politècnica de València. 385-394. https://doi.org/10.4995/ISUF2017.2017.6034OCS38539

    DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior

    Full text link
    We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application. Instead of using large over-parameterised generative networks to create sharp picture representations, we build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details. Additional to the data fidelity term, we also add Hessian and sparse constraints as regularization terms to improve the image reconstruction quality. Our proposed model is \textit{self-supervised} and converges to a solution based purely on the input blurred image and respective blur kernel without the requirement of any pre-training. We evaluate our technique using standard computer vision benchmarking datasets as well as real microscope images obtained by our enhanced depth-of-field (EDOF) underwater microscope, demonstrating the capabilities of our model in a real-world application. The quantitative results demonstrate that our approach is competitive with state-of-the-art non-blind image deblurring methods despite having a fraction of the parameters and not being pre-trained, demonstrating the efficiency and efficacy of embedding a classic deconvolution approach inside a deep network.Comment: 9 pages, 7 figure

    Segmentation of Intracranial Arterial Calcification with Deeply Supervised Residual Dropout Networks

    Get PDF
    Intracranial carotid artery calcification (ICAC) is a major risk factor for stroke, and might contribute to dementia and cognitive decline. Reliance on time-consuming manual annotation of ICAC hampers much demanded further research into the relationship between ICAC and neurological diseases. Automation of ICAC segmentation is therefore highly desirable, but difficult due to the proximity of the lesions to bony structures with a similar attenuation coefficient. In this paper, we propose a method for automatic segmentation of ICAC; the first to our knowledge. Our method is based on a 3D fully convolutional neural network that we extend with two regularization techniques. Firstly, we use deep supervision (hidden layers supervision) to encourage discriminative features in the hidden layers. Secondly, we augment the network with skip connections, as in the recently developed ResNet, and dropout layers, inserted in a way that skip connections circumvent them. We investigate the effect of skip connections and dropout. In addition, we propose a simple problem-specific modification of the network objective function that restricts the focus to the most important image regions and simplifies the optimization. We train and validate our model using 882 CT scans and test on 1,000. Our regularization techniques and objective improve the average Dice score by 7.1%, yielding an average Dice of 76.2% and 97.7% correlation between predicted ICAC volumes and manual annotations.Comment: Accepted for MICCAI 201

    BigFUSE: Global Context-Aware Image Fusion in Dual-View Light-Sheet Fluorescence Microscopy with Image Formation Prior

    Full text link
    Light-sheet fluorescence microscopy (LSFM), a planar illumination technique that enables high-resolution imaging of samples, experiences defocused image quality caused by light scattering when photons propagate through thick tissues. To circumvent this issue, dualview imaging is helpful. It allows various sections of the specimen to be scanned ideally by viewing the sample from opposing orientations. Recent image fusion approaches can then be applied to determine in-focus pixels by comparing image qualities of two views locally and thus yield spatially inconsistent focus measures due to their limited field-of-view. Here, we propose BigFUSE, a global context-aware image fuser that stabilizes image fusion in LSFM by considering the global impact of photon propagation in the specimen while determining focus-defocus based on local image qualities. Inspired by the image formation prior in dual-view LSFM, image fusion is considered as estimating a focus-defocus boundary using Bayes Theorem, where (i) the effect of light scattering onto focus measures is included within Likelihood; and (ii) the spatial consistency regarding focus-defocus is imposed in Prior. The expectation-maximum algorithm is then adopted to estimate the focus-defocus boundary. Competitive experimental results show that BigFUSE is the first dual-view LSFM fuser that is able to exclude structured artifacts when fusing information, highlighting its abilities of automatic image fusion.Comment: paper in MICCAI 202

    MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms

    Get PDF
    Cryo-electron tomography (cryo-ET) is an imaging technique that enables 3D visualization of the native cellular environment at sub-nanometer resolution, providing unpreceded insights into the molecular organization of cells. However, cryo-electron tomograms suffer from low signal-to-noise ratios and anisotropic resolution, which makes subsequent image analysis challenging. In particular, the efficient detection of membrane-embedded proteins is a problem still lacking satisfactory solutions. We present MemBrain - a new deep learning-aided pipeline that automatically detects membrane-bound protein complexes in cryo-electron tomograms. After subvolumes are sampled along a segmented membrane, each subvolume is assigned a score using a convolutional neural network (CNN), and protein positions are extracted by a clustering algorithm. Incorporating rotational subvolume normalization and using a tiny receptive field simplify the task of protein detection and thus facilitate the network training. MemBrain requires only a small quantity of training labels and achieves excellent performance with only a single annotated membrane (F1 score: 0.88). A detailed evaluation shows that our fully trained pipeline outperforms existing classical computer vision-based and CNN-based approaches by a large margin (F1 score: 0.92 vs. max. 0.63). Furthermore, in addition to protein center positions, MemBrain can determine protein orientations, which has not been implemented by any existing CNN-based method to date. We also show that a pre-trained MemBrain program generalizes to tomograms acquired using different cryo-ET methods and depicting different types of cells. MemBrain is a powerful and annotation-efficient tool for the detection of membrane protein complexes in cryo-ET data, with the potential to be used in a wide range of biological studies. It is generalizable to various kinds of tomograms, making it possible to use pretrained models for different tasks. Its efficiency in terms of required annotations also allows rapid training and fine-tuning of models. The corresponding code, pretrained models, and instructions for operating the MemBrain program can be found at: https://github.com/CellArchLab/MemBrain

    Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer with Deep Learning

    Full text link
    Objective. To develop an artificial intelligence method predicting lymph node metastasis (LNM) for patients with colorectal cancer (CRC). Impact Statement. A novel interpretable multimodal AI-based method to predict LNM for CRC patients by integrating information of pathological images and serum tumor-specific biomarkers. Introduction. Preoperative diagnosis of LNM is essential in treatment planning for CRC patients. Existing radiology imaging and genomic tests approaches are either unreliable or too costly. Methods. A total of 1338 patients were recruited, where 1128 patients from one centre were included as the discovery cohort and 210 patients from other two centres were involved as the external validation cohort. We developed a Multimodal Multiple Instance Learning (MMIL) model to learn latent features from pathological images and then jointly integrated the clinical biomarker features for predicting LNM status. The heatmaps of the obtained MMIL model were generated for model interpretation. Results. The MMIL model outperformed preoperative radiology-imaging diagnosis and yielded high area under the curve (AUCs) of 0.926, 0.878, 0.809, and 0.857 for patients with stage T1, T2, T3, and T4 CRC, on the discovery cohort. On the external cohort, it obtained AUCs of 0.855, 0.832, 0.691, and 0.792, respectively (T1-T4), which indicates its prediction accuracy and potential adaptability among multiple centres. Conclusion. The MMIL model showed the potential in the early diagnosis of LNM by referring to pathological images and tumor-specific biomarkers, which is easily accessed in different institutes. We revealed the histomorphologic features determining the LNM prediction indicating the model ability to learn informative latent features

    Deep Learning Improves Macromolecule Identification in 3D Cellular Cryo-Electron Tomograms

    Get PDF
    International audienceCryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (~3.2 MDa), Rubisco (~560 kDa soluble complex), and photosystem II (~550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semi-automated analysis of a wide range of molecular targets in cellular tomograms

    Signal processing methods for the analysis of cerebral blood flow and metabolism

    No full text
    An important protective feature of the cerebral circulation is its ability to maintain sufficient cerebral blood flow and oxygen supply in accordance with the energy demands of the brain despite variations in a number of external factors such as arterial blood pressure, heart rate and respiration rate. If cerebral autoregulation is impaired, abnormally low or high CBF can lead to cerebral ischemia, intracranial hypertension or even capillary damage, thus contributing to the onset of cerebrovascular events. The control and regulation of cerebral blood flow is a dynamic, multivariate phenomenon. Sensitive techniques are required to monitor and process experimental data concerning cerebral blood flow and metabolic rate in a clinical setting. This thesis presents a model simulation study and 4 related signal processing studies concerned with CBF regulation. The first study models the regulation of the cerebral vasculature to systemic changes in blood pressure, dissolved blood gas concentration and neural activation in a integrated haemodynamic system. The model simulations show that the three pathways which are generally thought to be independent (pressure, COâ‚‚ and activation) greatly influence each other, it is vital to consider parallel changes of unmeasured variability when performing a single pathway study. The second study shows how simultaneously measured blood gas concentration fluctuations can improve the accuracy of an existing frequency domain technique for recovering cerebral autoregulation dynamics from spontaneous fluctuations in blood pressure and cerebral blood flow velocity. The third study shows how the continuous wavelet transform can recover both time and frequency information about dynamic autoregulation, including the contribution of blood gas concentration. The fourth study shows how the discrete wavelet transform can be used to investigate frequency-dependent coupling between cerebral and systemic cardiovascular dynamics. The final study then uses these techniques to investigate the systemic effects on resting BOLD variability. The general approach taken in this thesis is a combined analysis of both modelling and data analysis. Physiologically-based models encapsulate hypotheses about features of CBF regulation, particularly those features that may be difficult to recover using existing analysis methods, and thus provide the motivation for developing both new analysis methods and criteria to evaluate these methods. On the other hand, the statistical features extracted directly from experimental data can be used to validate and improve the model

    Signal processing methods for the analysis of cerebral blood flow and metabolism

    No full text
    An important protective feature of the cerebral circulation is its ability to maintain sufficient cerebral blood flow and oxygen supply in accordance with the energy demands of the brain despite variations in a number of external factors such as arterial blood pressure, heart rate and respiration rate. If cerebral autoregulation is impaired, abnormally low or high CBF can lead to cerebral ischemia, intracranial hypertension or even capillary damage, thus contributing to the onset of cerebrovascular events. The control and regulation of cerebral blood flow is a dynamic, multivariate phenomenon. Sensitive techniques are required to monitor and process experimental data concerning cerebral blood flow and metabolic rate in a clinical setting. This thesis presents a model simulation study and 4 related signal processing studies concerned with CBF regulation. The first study models the regulation of the cerebral vasculature to systemic changes in blood pressure, dissolved blood gas concentration and neural activation in a integrated haemodynamic system. The model simulations show that the three pathways which are generally thought to be independent (pressure, COâ‚‚ and activation) greatly influence each other, it is vital to consider parallel changes of unmeasured variability when performing a single pathway study. The second study shows how simultaneously measured blood gas concentration fluctuations can improve the accuracy of an existing frequency domain technique for recovering cerebral autoregulation dynamics from spontaneous fluctuations in blood pressure and cerebral blood flow velocity. The third study shows how the continuous wavelet transform can recover both time and frequency information about dynamic autoregulation, including the contribution of blood gas concentration. The fourth study shows how the discrete wavelet transform can be used to investigate frequency-dependent coupling between cerebral and systemic cardiovascular dynamics. The final study then uses these techniques to investigate the systemic effects on resting BOLD variability. The general approach taken in this thesis is a combined analysis of both modelling and data analysis. Physiologically-based models encapsulate hypotheses about features of CBF regulation, particularly those features that may be difficult to recover using existing analysis methods, and thus provide the motivation for developing both new analysis methods and criteria to evaluate these methods. On the other hand, the statistical features extracted directly from experimental data can be used to validate and improve the model.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Impact of Establishment of National New Area on Carbon Reduction

    No full text
    In response to global climate change, China has incorporated carbon peaking and carbon neutrality into its overall economic and social development. National-level new areas are critical strategic carriers for high-quality regional economic development in China, playing an essential role in promoting carbon reduction. Objectively evaluating the carbon-emission-reduction effect of national-level new areas can help accumulate and promote China's low-carbon construction experience, and thus, comprehensively facilitate greening and ecological civilization construction. In this study, the impact of the establishment of national-level new areas on carbon emissions in their respective cities were investigated using the difference-in-difference method. The findings show that: 1) the establishment of a national-level new area can significantly minimize the carbon emissions in the city in which it is located, and after three years of establishment, it will have a significant long-term inhibitory effect on the carbon emissions of the city. This conclusion is still valid after a series of robustness tests, such as propensity score matching + difference-in-difference; 2) The national-level new area policy mainly reduces carbon emissions in a city through technological and energy-saving effects but cannot yet reduce them by adjusting the industrial structure. 3) The impact of the establishment of national-level new areas on the carbon emissions of surrounding cities shows an "∽" trend of increasing first, then decreasing, and subsequently increasing. It has a significant carbon-reduction effect on cities within the range of 200-250 km, indicating that national-level new areas can help promote carbon-emission reduction in surrounding cities. 4) The national-level new area policy has a higher carbon-emission-reduction effect on northern cities than on southern cities. The single-city layout model of the national-level new area has a significant carbon-emission-reduction effect on the host city, whereas the dual-city layout model does not significantly reduce the carbon emissions in the host city. This study investigated the carbon-emission-reduction effect of national-level new area policies and examined carbon-emission reduction in the national-level new areas of pilot cities through technological and energy-saving effects. This study helps to improve the theoretical understanding of national-level new area policies and carbon-emission impact mechanisms and provides a policy reference for China's promotion of the "dual-carbon" strategy
    corecore