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Abstract. Intracranial carotid artery calcification (ICAC) is a major
risk factor for stroke, and might contribute to dementia and cognitive de-
cline. Reliance on time-consuming manual annotation of ICAC hampers
much demanded further research into the relationship between ICAC
and neurological diseases. Automation of ICAC segmentation is there-
fore highly desirable, but difficult due to the proximity of the lesions to
bony structures with a similar attenuation coefficient. In this paper, we
propose a method for automatic segmentation of ICAC; the first to our
knowledge. Our method is based on a 3D fully convolutional neural net-
work that we extend with two regularization techniques. Firstly, we use
deep supervision to encourage discriminative features in the hidden lay-
ers. Secondly, we augment the network with skip connections, as in the
recently developed ResNet, and dropout layers, inserted in a way that
skip connections circumvent them. We investigate the effect of skip con-
nections and dropout. In addition, we propose a simple problem-specific
modification of the network objective function that restricts the focus
to the most important image regions and simplifies the optimization.
We train and validate our model using 882 CT scans and test on 1,000.
Our regularization techniques and objective improve the average Dice
score by 7.1%, yielding an average Dice of 76.2% and 97.7% correlation
between predicted ICAC volumes and manual annotations.

Keywords: intracranial calcifications, calcium scoring, deep learning,
deep supervision, residual networks, dropout

1 Introduction

Intracranial arteriosclerosis has been established as a major cause of stroke [1]
and might contribute to the risk of cognitive impairment and dementia [2]. In-
tracranial carotid artery calcification (ICAC) is a reliable marker for intracranial
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arteriosclerosis [1]. ICAC lesions are identified in non-contrast computed tomog-
raphy (CT) images as groups of voxels with an attenuation coefficient above 130
Hounsfield units (HU) on the track of the intracranial internal carotid artery
(IICA), from its petrous part until the circle of Willis.

Further investigation into causes and consequences of ICAC might result in
development of new treatments and preventive measures. For example, ICAC
volume, i.e., the total volume of all ICAC lesions found in a patient, might
potentially be used in stroke risk estimation in clinical practice.

Automated ICAC segmentation is challenging for several reasons. Firstly,
identifying the IICA location requires information from a large neighborhood,
due to a lack of contrast between arteries and surrounding tissues. Secondly,
ICAC might be very close to bones, which have similar intensity. (Refer to Fig.
2 for examples.)

To our knowledge, no methods have been proposed for automatic detection of
ICAC. However, a number of methods exist to automatically detect calcifications
in other vessel beds [4, 13]. Perhaps the most well-studied problem is coronary
artery calcification (CAC) detection. Earlier automatic CAC scoring methods
use supervised classification, but rely on atlas-based coronary artery localization
[16]. More recently, a deep learning approach [17] was proposed to detect CAC
in a more end-to-end fashion. However, the close proximity of ICAC to bones
makes its detection a different problem than detection of calcifications in cardiac
or extracranial carotid arteries, as lesions there are usually relatively easy to
distinguish from their immediate surroundings (the artery lumen).

Recently, deep neural networks demonstrated state-of-the-art performance
on many challenging visual recognition tasks [9]. Fully convolutional networks
(FCNs) achieved impressive results for segmentation of both natural [11] and
biomedical images [12]. FCNs are by design more computationally efficient and
have higher capacity for accurate localization than patch-based approaches (e.g.,
[3]). Compared to purely convolutional nets without downsampling layers (e.g.,
the aforementioned CAC detection network [17]), FCNs allow for much more
features and/or layers and are hence capable of capturing more complex patterns.

Overfitting is a notorious problem of deep networks. One of the ways to
counter it is to use dropout layers [14], which introduce noise in hidden layers
during training. Another problem of deep networks is challenging optimization.
To combat it, Lee et al. [10] proposed supervision of hidden layers, or “deep
supervision”. This technique was reported to improve the convergence speed
and reduce overfitting by encouraging the network to develop features useful
for final classification in earlier layers. To ease the optimization of very deep
networks, He et al. [5] introduced the residual network (ResNet) architecture.
ResNet is composed of blocks learning residual functions with respect to their
inputs. Huang et al. [7] proposed to train ResNet with a random subset of layers
dropped and bypassed with ResNet’s skip connections, yielding a network with
stochastic depth. This technique acts as a regularizer, although it might work
the best for very deep networks. For shallower networks (like ones considered in
this paper) it might be a too strong form of regularization.



3

Fig. 1: The architecture of our network. Green “Conv”: (strided) convolutional
layers with parameters indicated as “{output feature number}, {kernel size} /
{stride}”. Pink “Up”: upsampling layers. Blue “BN, ReLU” or “BN, σ”: batch
normalization (BN) and ReLU/sigmoid activation. Brown “Concat”: concate-
nation along feature dimension. Grey “Dropout”: possible positions of dropout
layers. For the sake of simplicity, cropping layers needed to match the dimensions
of inputs to concatenation and summation layers are omitted.

In this paper, we propose a method for automatic ICAC segmentation. Our
method is based on a deeply supervised 3D FCN. To ease the optimization,
we introduce a simple problem-specific modification of the network’s objective
that emphasizes important image regions. To further increase the generalization
capacity of the network, we propose to combine dropout and ResNet by insert-
ing dropout layers into the residual blocks. We investigate the importance of
ResNet’s skip connections and the position of the dropout layers in blocks.

2 Methods

Our architecture is described in detail in Section 2.1. In the following subsection
we explain deep supervision and how we adapt the objective to our problem. In
the last subsection we explain dropout ResNets.

2.1 Architecture

Our base architecture is depicted in Fig. 1. We use valid convolutions to avoid
undesired border effects. Strided convolution is used for downsampling. All con-
volutions, down- and upsampling operations are 3D. We downsample less along
the longitudinal axis, because a very large receptive field along that dimension
is not necessary. Batch normalization (BN) [8] layers are added before every
activation layer, to improve the convergence speed and regularize the network.
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The receptive field of our network is 85×85×37 voxels. The number of features
and layers is chosen to fit the available GPU memory (8 GB).

In this paper, we experiment with residual and non-residual, or “plain”, ar-
chitectures. We obtain a ResNet or a plain variant of our architecture by choosing
a corresponding block (violet blocks in Fig. 1). A residual block takes an input x
and outputsH(x), with its layers computing a residual function F(x) = H(x)−x.
The layer order in our residual blocks is the same as the one proposed in [6].

2.2 Deep Supervision and Objective Function

Our network has six auxiliary classifiers placed on top of several intermediate
layers (Fig. 1). The training objective is the sum of the loss associated with the
final classifier and a weighted sum of the auxiliary classifier losses: Ltotal(W,w) =
L(W ;X ,Y) +

∑
i aiLi(W,wi;X ,Y), where X is a collection of input voxels, Y is

corresponding ground truth labels, and W and w = [w1, ..., w6] are the weights
of the main network and auxiliary classifiers, respectively.

Every Li is the sum of cross-entropy losses measuring the mismatch between
the network output and the ground truth for voxels above the clinical calcifica-
tion threshold of 130 HU. We exclude below-threshold voxels from supervision in
order to simplify the optimization problem and restrict the focus of the network
to distinguishing between ICAC and the most difficult negatives – bones.

2.3 Dropout in Residual Networks

Dropout is a technique in which activations of a randomly selected subset of
neurons are set to zero during training. During testing, no neurons are dropped,
but the weights of the network are decreased to account for the resulting increase
in total activation. Dropout reduces co-adaptation between neurons, and hence
yields a regularization effect [14].

However, dropout layers cause a complete loss of a subset of their input fea-
tures, and thus reduce representation capacity of plain models during training,
which may harm their performance. For this reason, we believe that a combi-
nation of dropout with a ResNet architecture is an interesting alternative. We
obtain a dropout variant of our architecture by placing dropout layers inside its
blocks (at most one per block). Fig. 1 shows all possible positions of dropout
layers in plain and residual blocks (dropout cannot precede BN). Unlike its plain
counterpart, the residual dropout version of our network always maintains a full
set of features, due to skip connections circumventing dropout layers.

The difference between stochastic depth [7] and our approach is the aggres-
siveness of dropout. In stochastic depth, either none of the features of a block’s
last layer are randomly set to zero, or all of them, which effectively shortens
the network depth during training. In our method, either block’s convolutional
layers get a noisy input (if dropout is placed before convolution), or a block’s
last layer is corrupted by noise (with dropout before addition). A middle ground
between stochastic depth and our dropout ResNet could be a dropout ResNet in
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which the standard dropout layers (as in [14]) are replaced by more aggressive
SpatialDropout [15] layers, which randomly drop entire feature maps.

3 Dataset, Preprocessing and Network Training

Our dataset consists of 1882 non-contrast-enhanced CT images reaching from the
aortic arch to the intracranial vasculature. The images were annotated by two
trained observers who indicated regions of interest (ROI) with visible calcifica-
tion on all image slices. ICAC lesions are easily obtained from these annotations
by thresholding at 130 HU. The in-plane resolution of scans is 0.23 mm×0.23 mm
and the slice thickness is 1 mm. We registered the images rigidly to a single ref-
erence image and cropped them along the longitudinal axis so that they contain
only the intracranial part of the carotid artery. Finally, we downsampled ax-
ial slices (roughly twice) so that their spatial resolution matches that of the
longitudinal axis. The final image size is 240× 240× 100 voxels.

We assigned every image randomly to the training, validation and test sets
of sizes 632, 250 and 1000 respectively. Due to the GPU memory limitations, we
trained our networks on mini-batches of one patch of 178×178×98 voxels. During
testing, a network was applied on the images patch-wise. The output patches
were tiled and averaged (at locations of overlap) to yield a segmentation of a
whole scan. The final segmentation was obtained by removing the voxels below
130 HU. The only kind of data augmentation used was flipping along the frontal
axis. The network was trained with stochastic gradient descent with an initial
learning rate of 0.1, which was reduced 10 times after epoch 10. The momentum
was increased from 0.9 to 0.99 after the same epoch. The initial weight of positive
voxels (ICAC) in the objective was set to 1000 (the approximate ratio between
positives and negatives) and reduced to 1 after epoch 5. The learning rate,
momentum and voxel weighing schedules were chosen to yield fast and smooth
training loss decay. The weights ai of auxiliary classifier losses were initialized
at 1 and decayed linearly to 0 over the course of 50 epochs. Dropout layers were
inserted in blocks 4-8 with dropout probabilities of [0.3, 0.3, 0.4, 0.4, 0.5].

All hyperparameters were selected based on the experiments on the training
and validation sets, prior to the evaluation on the test set. The final network
weights were chosen based on the validation loss.

4 Results and Discussion

We evaluate the effect of our techniques on the performance by progressively
adding them to our baseline network: a plain 3D FCN, without deep supervision
and dropout, and with supervision of all voxels. Table 1 presents the results of
the evaluation on the test set. Deep supervision increased the Dice substantially.
However, unlike [10] we did not observe an increased convergence speed. We
suspect that this might be linked to BN already speeding up the optimization.

Removing below-threshold voxels from supervision improved the Dice overlap
and convergence speed: the network reached 75% mean training Dice at epoch
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Table 1: The contribution of different techniques to the performance. Absolute
Dice measures the overlap between the network segmentations and the ground
truth without averaging over the images. Quarters are defined by ordering the im-
ages by increasing ICAC volume, and partitioning into four equally-sized groups.
The last column reports the significance of the improvement over the previous
row computed with a paired t-test.

Experiment
Absolute

Dice
Dice Mean
and SD

Mean Dice per Quarter T-test
P25 50 75 100

plain 3D FCN 80.1 69.1 ± 21.8 52.6 67.9 75.3 80.9 -
+ deep supervision 83.1 72.9 ± 21.9 58.6 71.3 77.7 84.2 < 10−22

+ > 130 HU objective 84.8 75.1 ± 22.3 60.1 73.9 80.4 86.3 < 10−9

+ best dropout ResNet 85.0 76.2 ± 20.9 62.8 75.3 80.4 86.5 0.0044

Table 2: Results of the experiments with plain and residual architectures and
different dropout positions. Every network is a deeply supervised 3D FCN with
supervision of only > 130 HU voxels. Positions correspond to those in Fig. 1.
The last column indicates the significance of the improvement over the plain
non-dropout network.

Experiment Absolute Dice Dice Mean and SD T-test P

Plain non-dropout 84.8 75.1 ± 22.3 -
Plain dropout 83.0 70.7 ± 24.7 < 10−17

ResNet + dropout before first conv. 84.9 75.7 ± 21.4 0.0694
ResNet + dropout before second conv. 84.3 76.0 ± 19.8 0.0261

ResNet + dropout before addition 85.0 76.2 ± 20.9 0.0044

24, whereas the network with supervision of all voxels did so at epoch 57. One
explanation could be that removing a large part of the voxels from the objec-
tive made the optimization problem easier (i.e., there were fewer constraints to
satisfy). Another explanation for the improvement in Dice could be that our
objective emphasizes difficult negatives, whereas in the objective that supervises
all voxels those negatives constitute only around a fifth of all negatives.

The best performance was achieved by turning the network into a ResNet
and adding dropout layers into the residual blocks before addition. Interestingly,
unlike the other methods, dropout increased the Dice of images with smaller
ICAC volumes much more than the Dice of the other images (see the Dice per
quarter in Table 1). This is because dropout improved the performance more for
smaller and lower intensity (close to 130 HU) lesions, which occur more often on
images with a lower ICAC volume. This might happen because networks with
dropout use more information from neighboring areas, which can be helpful for
smaller and lower intensity lesions, because downsampling might reduce their
intensity to a value below the calcification threshold.
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Fig. 2: Left : a 2D histogram of automatically computed (y axis) and ground
truth ICAC volumes (x axis). Every bin has the same number of images. Right :
example detections. Red: ground truth ROIs. Green: network segmentations.

We evaluated the importance of skip connections and the positioning of
dropout layers in the ResNet blocks. The results are presented in Table 2.
Dropout layers in the plain architecture decreased the Dice. We believe this
is because our network has a rather small number of features for our problem
complexity and dropout reduced the representation capacity of the model too
much. This is supported by the substantially reduced performance we observed
for networks with a smaller number of features (results not shown). Stochastic
depth [7] and ResNet with SpatialDropout also reduced the performance (results
not shown). We suspect it is because of the same reason: these techniques are
too strong regularizers for a network of our size applied to our problem (e.g.,
100 layers of [7] vs. ours 24). In contrast, our dropout ResNet does not cause a
significant reduction in the representation capacity or expressivity of the model,
and still exerts a regularizing effect as it reduces co-adaptation between neurons.

Placing dropout before addition produced a slightly higher Dice than placing
it before one of the two convolutions (P -values 0.106 and 0.328). When dropout is
placed before convolutional layers, these layers can compensate (to some extent)
the information loss induced by dropout before it is passed to a next block,
whereas in the other case, the corrupted output is passed to the next block and
even further with skip connections.

Fig. 2 shows examples of detections performed by our best network. Our net-
work can accurately segment ICAC even when it is adjacent to bone, although
sometimes it still captures a part of the bone. The toughest examples for de-
tection, responsible for over 80% of missed lesions, were very small lesions and
lesions with an intensity close to 130 HU. Lesions adjacent to bones were also
over-represented among the false negatives, but to a substantially lesser extent.

The intraclass correlation coefficient (ICC) between the automatically esti-
mated ICAC volumes and the ground truth for our best network is 97.7%. (See
Fig. 2.) This is quite close to the interrater agreement with ICC = 99% that we
computed on 50 images from our dataset.
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5 Conclusion

We presented a method for automatic segmentation of ICAC in non-contrast-
enhanced CT. We introduced several modifications to a plain 3D fully convo-
lutional network, namely: supervision of hidden layers, dropout combined with
residual architecture, and a problem-specific adaptation of the objective func-
tion restricting the focus on the most relevant structures. Every modification
resulted in a statistically significant improvement, totaling to 7.1% increase in
the mean Dice. The agreement between our best network ICAC volume estima-
tions and the expert estimations is close to the interobserver agreement for our
dataset. We believe our method has a potential for application on large-scale
epidemiological studies on ICAC.
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