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ARTICLE INFO ABSTRACT
Affid_e history: Background and Objective: Cryo-electron tomography (cryo-ET) is an imaging technique that enables 3D
Received 15 February 2022 visualization of the native cellular environment at sub-nanometer resolution, providing unpreceded in-
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sights into the molecular organization of cells. However, cryo-electron tomograms suffer from low signal-
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to-noise ratios and anisotropic resolution, which makes subsequent image analysis challenging. In partic-
ular, the efficient detection of membrane-embedded proteins is a problem still lacking satisfactory solu-

Keywords: tions.
CFYC{-EIECFFO{I tomography Methods: We present MemBrain - a new deep learning-aided pipeline that automatically detects
particle picking membrane-bound protein complexes in cryo-electron tomograms. After subvolumes are sampled along a
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segmented membrane, each subvolume is assigned a score using a convolutional neural network (CNN),
and protein positions are extracted by a clustering algorithm. Incorporating rotational subvolume nor-
malization and using a tiny receptive field simplify the task of protein detection and thus facilitate the
network training.
Results: MemBrain requires only a small quantity of training labels and achieves excellent performance
with only a single annotated membrane (F1 score: 0.88). A detailed evaluation shows that our fully
trained pipeline outperforms existing classical computer vision-based and CNN-based approaches by a
large margin (F1 score: 0.92 vs. max. 0.63). Furthermore, in addition to protein center positions, Mem-
Brain can determine protein orientations, which has not been implemented by any existing CNN-based
method to date. We also show that a pre-trained MemBrain program generalizes to tomograms acquired
using different cryo-ET methods and depicting different types of cells.
Conclusions: MemBrain is a powerful and annotation-efficient tool for the detection of membrane pro-
tein complexes in cryo-ET data, with the potential to be used in a wide range of biological studies. It is
generalizable to various kinds of tomograms, making it possible to use pretrained models for different
tasks. Its efficiency in terms of required annotations also allows rapid training and fine-tuning of models.
The corresponding code, pretrained models, and instructions for operating the MemBrain program can be
found at: https://github.com/CellArchLab/MemBrain.
© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction using an electron microscope. Combining the information from all
these images yields high-resolution 3D volumes. These molecular

Cryo-electron tomography (cryo-ET) is performed by acquiring views provide a striking new perspective on cellular functions and
projection images of a frozen sample at numerous different angles can reveal important insights into both general biological phenom-
ena [1] as well as human diseases including neurodegeneration
and cancer [2,3]. About one third of human proteins are associated
with membranes [4], which compartmentalize the cell. Membranes
organize proteins into microdomains to direct cellular processes,
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including the bioenergetic reactions in mitochondria and chloro-
plasts, which produce the energy of life. It is thus an important
challenge to identify protein complexes within their native mem-
brane environment.

In cryo-ET, particle picking is commonly performed using tem-
plate matching [5], i.e., a low-pass filtered model of the macro-
molecular complex of interest is fit to the entire tomogram by
computing cross-correlation scores. Since this has to be done for
all possible positions and orientations, this approach is computa-
tionally expensive and yields a noisy output that requires manual
post-processing. For membrane-bound proteins, template matching
is particularly challenging, as these complexes are often small, and
large portions of their structures are buried within the membranes,
which can reduce their correlation scores with the template.

As a more specialized approach, PySeg [6] is a template-free
procedure for the detection of membrane-bound proteins. It uses
discrete Morse theory to trace densities protruding from the mem-
brane surface. These densities are then clustered using 2D rota-
tional averages, followed by manual selection of reasonable classes.
However, the use of PySeg is complicated by difficult parameter
tuning and the requirement for human intervention.

Recently, several deep learning-based approaches have been
proposed for the detection of macromolecular complexes. EMAN
[7] detects various kinds of densities by creating segmentations
based on a 2D CNN architecture that utilizes large convolutional
kernels of size 15 x 15. Therefore, it requires large image patches
for training, where all present objects of interest must be anno-
tated with pixel-wise class labels in each of the 2D images. This
is also the case for DeepFinder [8], which requires even more an-
notations, since it utilizes 3D convolutions with a large receptive
field and therefore requires 3D voxel-wise class labels. However,
given 3D center positions, DeepFinder can automatically gener-
ate coarse voxel annotations using its “sphere-based annotation”
method. Another approach is implemented in crYOLO [9], which
was initially developed for detecting single particles in 2D cryo-EM
micrographs, but has since added the option to pick in 3D tomo-
grams. It is based on the popular object detection framework YOLO
[10]. Instead of creating a segmentation mask first, crYOLO pre-
dicts the bounding boxes of the particles directly. An advantage of
crYOLO is that it requires only positive labels and uses adjustable
penalty weights for false negatives and false positives to account
for incompletely annotated regions. Nevertheless, we experienced
that crYOLO still struggles to perform reliable predictions when
trained with sparse annotations.

In current cryo-ET analysis workflows, manual particle pick-
ing is often performed to localize membrane-bound proteins. Even
with the guidance of specialized software [11,12], the accurate an-
notation of particles in 3D remains a tedious task. Moreover, to-
mograms suffer from a low signal-to-noise ratio and anisotropic
resolution from the missing wedge [13]. Thus, precisely localizing
protein complexes remains a major challenge with existing meth-
ods, especially in large tomograms that involve thousands of pro-
teins of interest. To enable more in-depth biological discoveries, it
is necessary to develop automated tools that can be trained on a
small number of high-quality annotations to reliably pick particles
in extensive datasets of many tomograms.

Here, we present MemBrain: a generalizable deep learning-
aided pipeline to detect membrane-bound protein complexes in
cryo-ET. Its training can be performed annotation-efficiently, in
that it requires only few particle annotations to reach a good per-
formance. In contrast to other approaches, MemBrain utilizes the
membrane geometry to extract and align subvolumes and thereby
achieves model invariance to unseen membrane orientations. Fur-
thermore, instead of classifying each subvolume into binary classes
(i.e., particle vs. non-particle), we show that score assignment
based on the regression of distance to the nearest particle can cope
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better with imprecise ground-truth positions, which commonly oc-
cur in manual labelling. As an additional feature, MemBrain can
extract particle orientations, in contrast to common detection net-
works that only provide particle positions. To our knowledge, this
is the first deep learning-aided pipeline that is specialized for the
detection of membrane-bound proteins.

2. Methodology
2.1. Overview of MemBrain

Fig. 1 illustrates the workflow of our pipeline. As an input,
we use membrane segmentations from raw cryo-electron tomo-
grams (Fig. 1A). For example, these segmentations can be gener-
ated using TomoSegMemTV [14], followed by manual curation, as
demonstrated in [12]. In the first step, we sample points uniformly
along the segmented membrane and identify their corresponding
membrane normal vectors. Subsequently, subvolumes are extracted
around each sampled position and rotated so that the membrane
is parallel to the x-y plane (pre-processing step, Fig. 1B). These
aligned subvolumes are then fed into a CNN, which assigns each
subvolume a score indicating its distance to a particle center (scor-
ing step, Fig. 1C). Finally, particle center positions and orientations
are extracted using Mean Shift clustering [15] (post-processing
step, Fig. 1D). We provide a detailed explanation of each step
below.

2.2. Subvolume Sampling and Preprocessing

2.2.1. Point Sampling and Normal Voting

First, we manually specify which side of the membrane should
be picked. This is done by clicking on the desired side of the mem-
brane segmentation (illustrated in Figure S1A). Next, MemBrain
samples points all over the selected membrane surface (see sam-
pled positions in Fig. 1B). More specifically, we compute the dis-
tance of any voxel in the tomogram to the membrane and thresh-
old this distance to mask the neighborhood of the segmentation
(see Fig. S1B; in all our experiments, we used a maximum dis-
tance of 15 voxels). Then, for each point in this neighborhood, we
find its nearest voxel on the segmented membrane surface. These
points on the surface represent our sampled points. The connec-
tion vector between them and the original points in the neighbor-
hood serve as a membrane normal vector.

However, points in the membrane neighborhood that are very
close to the surface tend to have non-reliable normal vectors. On
the other hand, only considering points with large distances leads
to non-uniform point sampling on the membrane surface. There-
fore, we apply Normal Voting [16,17], which is an algorithm that
corrects normal vectors via weighted averaging, while also taking
the membrane curvature into account. By giving a higher weight to
the reliable normal vectors (from long-distance points), we achieve
both a uniform sampling of points on the membrane surface and a
reliable estimation of normal vectors.

2.2.2. Subvolume Extraction and Rotation

For each sampled position on the membrane surface, we extract
a small subvolume. The exact size of the subvolume should depend
on the size of the protein complex we aim to detect. In our exper-
iments, we use a subvolume size of 12 x 12 x 12 voxels. We ob-
served this size to be quite robust to different protein dimensions,
but it can be adjusted if needed. Next, we rotate each subvolume
using its corresponding normal vector so that the membrane con-
tained in the subvolume is aligned to the x-y plane, i.e., the mem-
brane normal vector is parallel to the z-axis (see rotated volume in
Fig. 1B). This rotation step is critical to guarantee that our detec-
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Fig. 1. The MemBrain processing pipeline. A: An example 2D slice of a cryo-electron tomogram (denoised using Cryo-CARE [25], scale bar: 100 nm) and corresponding
membrane segmentations (3D view of all segmented membranes). B: Pre-processing step: Top: Points (white) are sampled, and subvolumes (green) are extracted around
each point. Bottom: Subvolumes are aligned. C: Scoring step: The CNN predicts the distance of each subvolume to the nearest particle center. D: Post-processing: Particle

centers and orientations are extracted using Mean Shift clustering.

tion is invariant to different membrane orientations, as we elabo-
rate in Section 3.

2.3. Convolutional Neural Network

2.3.1. Architecture

The preprocessing steps of MemBrain reduce the task of protein
detection in the entire tomogram to the detection of densities pro-
truding from the membrane. Since the context, i.e., the location of
the membrane, is already given by the membrane segmentation,
our network does not need to learn it. Therefore, we can neglect
large-scale features and use a small network architecture, result-
ing in a tiny receptive field of the convolutional layers. In our ex-
periments, we only used four consecutive 3D convolutional layers,
followed by a single fully connected layer. The network outputs a
single value to indicate the distance of the subvolume to the near-
est protein center. The detailed network architecture is shown in
Table S2.

2.3.2. Label Assignment

For training, we assign labels to each input subvolume based
on its center point’s distance to the closest protein complex cen-
ter. However, protein structures are generally not spherical. There-
fore, instead of using the Euclidean distance to assign the distance
values, we use the Mahalanobis distance [18], which weights dis-
tances in each direction based on a covariance matrix, thus tak-
ing the protein shape into account (visualized in Figure S3). The
covariance matrix is extracted from the low-pass filtered structure
that was also used for generating ground truth positions and orien-
tations of the respective protein. This can, for example, be a struc-

ture acquired from the Protein Data Bank (PDB) or from a previous
averaging experiment.

2.3.3. Optimization Details

Even with substantial effort in manual annotation, our ground-
truth labels are not perfectly accurate, as manually picked po-
sitions always deviate slightly from the exact particle locations.
Moreover, it is almost unavoidable to miss some protein com-
plexes. Therefore, we chose to optimize the smooth L1 loss func-
tion [19], which is more robust with respect to outliers compared
to the commonly used mean squared error (MSE). We use the
Adam [20] optimizer to minimize the loss function. To improve
training stability, we incorporate several batch normalization lay-
ers [21]. Finally, as regularization techniques to make the training
more stable and avoid overfitting, we use a combination of weight
decay and data augmentation. In particular, we use random ro-
tations around the z-axis and random flipping along the x- and
y-axes to artificially increase the number of samples, as well as
adding Gaussian noise to the subvolumes [22]. All of these aug-
mentation methods are performed on-the-fly during training for
each iteration.

2.4. Post-processing

2.4.1. Mean Shift Clustering

We utilize the distance heatmap that results from our network
predictions to extract particle positions. For this, we use only the
points with a predicted distance less than a threshold (depending
on the protein complex size) to perform our adapted version of
Mean Shift clustering, where we have added a hierarchical cluster
separation step. Mean Shift [15] is an iterative approach that re-
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fines cluster centers based on a moving weighted average in each
iteration. The only required parameter is the bandwidth, which
specifies the radius of points considered for the weighted aver-
age. Using a large bandwidth leads to particle clusters that are
merged, whereas a small bandwidth can cause one particle to split
into two clusters. To avoid both of these errors, we implemented
a refined version of Mean Shift: first, we choose a large band-
width parameter, leading to relatively large clusters. If one of these
clusters exceeds a certain size (depending on the protein com-
plex size), we reprocess it using a lower bandwidth. Thereby, we
split merged protein clusters hierarchically. Our version of Mean
Shift also weights single points using the inverse network-assigned
scores to guide the clustering algorithm towards the correct parti-
cle centers, since points close to the centers tend to have stronger
(i.e., lower) distance values.

2.4.2. Orientation Estimation

Besides the cluster center, Mean Shift also identifies each point
that has converged to the respective cluster center. As the neu-
ral network cannot see a large context, it assigns distance scores
to the points based on only the densities within the respective
small subvolumes: small distances for subvolumes with high pro-
tein density and large distances for subvolumes with low protein
density. By using the Mahalanobis distance and thus anisotropic
distance assignments for training, this behavior is further ampli-
fied. After thresholding these distance scores, only those areas with
high enough protein density remain. Thus, we assume that the
converged cluster points resemble the rough shapes of the protein
complexes. In cases of non-spherical proteins, MemBrain can use
the cluster points to compute orientations of the detected protein
complexes within the membrane. We perform Principal Compo-
nent Analysis [23] to find the vector that best describes the cluster,
i.e.,, minimizes the Euclidean distances between the cluster points
and the line described by the vector. In combination with the pre-
viously extracted normal vector, we are able to compute all three
Euler angles describing the protein’s orientation in space. These
Euler angles can then be used to initialize downstream tasks, such
as subtomogram averaging [13].

3. Results
3.1. Data Collection and Annotation.
We evaluated MemBrain using three cryo-ET datasets of dif-

ferent biological samples that were vitrified on EM grids and
then thinned with focused ion beam (FIB) milling [24]. Dataset
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1 consists of nine tomograms of isolated Spinacia oleracea chloro-
plasts, acquired with defocus imaging and denoised with the deep
learning-based Cryo-CARE program [25]. Dataset 2 contains four
tomograms of Chlamydomonas reinhardtii chloroplasts inside native
cells [12], acquired with Volta phase plate (VPP) imaging and not
denoised. Dataset 3 is composed of five tomograms of isolated rod
outer segments from wild-type mice [26], acquired without VPP
and denoised with Cryo-CARE. Fig. 2 shows example 2D slices of
all three datasets, as well as Membranogram views that display
the different distributions of protein complexes within the mem-
branes. More detailed information about acquisition of the datasets
can be found in the supplementary S.1.1. In all tomograms, mem-
branes were segmented using TomoSegMemTV [14], followed by
manual curation. For Datasets 1 and 2, particle positions and ori-
entations were manually annotated using Membranorama [11,12],
whereas for Dataset 3, particle positions were generated semiau-
tomatically by an expert using PySeg (see supplementary S.1.2).
For Dataset 1, a total of 455 membrane segmentations were cre-
ated, 45 of which were annotated with protein complex locations
and orientations for 1641 Photosystem II (PSII) complexes, 471 Cy-
tochrome b6f (b6f) complexes, and 757 unknown densities (UK).
Dataset 2 contains a total of 31 segmented and annotated mem-
branes, including 730 PSII positions, 379 b6f positions and 273 UK
positions. For training and validation sets, we used 35 membranes
from seven Dataset 1 tomograms. We trained and evaluated with
PSII complexes, as the b6f complexes are so small that they are
hard to visually identify in some tomograms, and therefore will
require further adjustments to be reliably detected. The remain-
ing two tomograms from Dataset 1, as well as all tomograms from
Datasets 2 and 3, were reserved as test sets.

3.2. Analysis of MemBrain’s Performance

3.2.1. Evaluation Metric

For evaluating MemBrain’s performance with respect to ground
truth particle positions, we compute precision (P), recall (R), and
F1 score (F;) of our predicted particle coordinates. For the calcula-
tion of recall, we define a true positive (TPg) as a ground truth (GT)
PSII position that has been hit, i.e., a predicted position is within
a certain radius (in this case, 4.5 voxels). Correspondingly, a false
negative (FNg) is a GT position that is not hit by a predicted posi-
tion. For precision, a true positive (TPp) is a predicted position that
hits a GT position (either PSII or unknown densities), and a false
positive (FPp) is a predicted position that does not hit a GT posi-
tion. The F1 score is computed as the harmonic mean of recall and

Fig. 2. The three cryo-ET datasets examined in this study. For each panel, Top: Example 2D tomogram slices (scale bars: 100nm), Bottom: Membranogram view of one
membrane. The visualized membrane is highlighted in yellow. A: Dataset 1 - Chloroplasts isolated from Spinacia oleracea, acquired using defocus imaging and denoised with
Cryo-CARE [25]. B: Dataset 2 [12] - Chloroplasts inside Chlamydomonas reinhardtii cells, acquired using Volta phase plate imaging [30], not denoised. C: Dataset 3 [26] - Rod
outer segments isolated from wild-type mice, acquired using defocus imaging and denoised with Cryo-CARE.
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100 nm). Yellow boxes show PSII positions, orange boxes represent unknown density (UK) positions. Bottom: Membranogram views of two membranes from the test set.
Mapped in are PSII protein structures (yellow) and UK positions (orange cubes). The five other panels show the analysis of predicted positions for all compared methods.
True positives are highlighted in white, false negatives in magenta, and false positives in cyan.
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3.2.2. Quantitative Analysis

Table 1 shows the performance of MemBrain in comparison
with other state-of-the-art deep learning particle picking algo-
rithms, as well as the commonly used template matching approach
(for more details about the generation of comparison positions,
see supplementary S1.3). In addition, Fig. 3 shows how well the
methods performed with respect to ground truth on a 2D slice
(top views), as well as two membranes (bottom views). All deep
learning-methods were trained using 28 membranes from Dataset
1 as the training set (7 membranes were used for the validation
set), while template matching was performed using a native struc-
ture of PSII embedded in a membrane density [12] as the reference

Table 1
Benchmarking results on the test sets of Datasets 1 and 2 for Template Matching
(TM) [29], cr'YOLO [9], DeepFinder [8], EMAN [7], and MemBrain.

Dataset Dataset 1 Dataset 2

Metric Prec Rec F1 Prec Rec F1
T™ [29] 0.39 0.56 0.46 0.40 0.47 0.43
crYOLO [9] 0.22 0.18 0.20 0.25 0.04 0.07
DeepFinder [8] 0.54 0.61 0.57 0.28 0.55 0.37
EMAN [7] 0.63 0.64 0.63 0.47 0.39 0.42
MemBrain 0.90 0.94 0.92 0.73 0.83 0.78

template. For evaluation, we only considered those predictions that
were close to an annotated membrane in order to enable compar-
ison to the corresponding ground truth. MemBrain outperformed
the other methods on the test set of Dataset 1 and even gener-
alized well to Dataset 2, despite a considerable domain shift be-
tween these samples. In particular, we emphasize that the recall
for MemBrain far exceeded the level of the other methods, which
is an important advance to prevent missing ground-truth particles.
In comparison, precision is less critical, as there are mature tech-
niques to clean up false-positive picks, e.g., via subtomogram clas-
sification [27]. Although DeepFinder picks well in some regions,
it misses proteins in other regions completely (Fig. 3, membrane
views), conceivably because the training data does not cover all
possible membrane orientations. EMAN already has a mechanism
to compensate for the lack of particle orientations by perform-
ing random rotations on the training data. Nonetheless, it did not
perform as well as MemBrain, demonstrating the importance of
the subvolume rotation module and the focused detection in our
pipeline. We conclude that all other methods have limitations in
this specific context of membrane proteins, as all of them require
regions in the tomograms that are richly annotated, and expect-
edly have problems in this setting of very sparse labels. Compared
to deep learning-based methods, template matching is even more
difficult to tune, because the peaks in the detection are mostly
triggered by the strong membrane signal and often do not corre-
spond to actual protein complexes. As a result, template matching
leads to low recall and precision. Besides particle detection, Mem-
Brain can additionally extract particle orientations, which is be-
yond the current capacities of other deep learning-based methods.
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Fig. 4. Analysis of particle orientations estimated by MemBrain. Comparison of MemBrain's 120 true positive picks to the ground truth annotations in the Dataset 1 test
set. A: Circular heatmap showing differences between ground truth in-plane angles and estimated angles. The long axis of the mapped PSII structure (0°) is plotted in yellow.
Note that due to PSII's two-fold symmetry, the deviation cannot exceed 90°. B: Histogram of absolute differences between ground truth in-plane angles and estimated angles.

The mean absolute error (MAE) is indicated in red.

Fig. 4 shows the distribution of MemBrain’s predicted orientations
with respect to the ground truth. We achieved a mean absolute
error of 24.4 degrees (maximum possible deviation is 90 degrees
due to PSII's C2 symmetry) on our Dataset 1 test set, which can
serve as a good initialization for subvolume alignment and make
the subsequent subtomogram averaging [5,28,29] more efficient. A
comparison of the tracked times for training, prediction, and ex-
traction of particle positions for all compared models can be found
in Table S3.

3.2.3. Qualitative Evaluation on Dataset 3

For Dataset 3, we did not have ground truth protein positions
to compute quantitative evaluation metrics. Instead, we assessed
the picks from MemBrain and PySeg using subtomogram averaging
(Fig. 5; for details about the averaging procedure, see supplemen-
tary S.1.4). First, we trained a MemBrain model using the ground
truth data from Dataset 1 (the same model as for the previous sec-
tion), which reliably picked PSII complexes in this spinach dataset
(Table 1; Fig. 5A). Then, we applied this pre-trained MemBrain
model to predict membrane-bound protein positions in the mouse
rod outer segments of Dataset 3 (Fig. 5B). For comparison, we also
predicted membrane-bound protein positions in Dataset 3 using
PySeg (Fig. 5C). Subtomogram averaging of the MemBrain picks,
PySeg picks, as well as intersection and difference sets between
these picks revealed interesting differences between the two detec-
tion algorithms. In both Datasets 1 and 3, MemBrain consistently
picks densities that are embedded in the membranes and appear
as small bumps. In contrast, PySeg was configured to pick all den-
sities over the membranes regardless of their shape. This initial
picking was refined after the first cleaning step, where the ex-
pert selected automatically generated 2D rotational average classes
that indicated a density on the membrane (PySeggc.,, see supple-
mentary S.1.2, and Figure S2). Thus, PySeg picks a wider variety of
particles, resulting in a different average. Looking at the consen-
sus analysis (Fig. 5D), we can see that PySeg picks often coincide
with MemBrain picks, and the average of this intersection subclass
looks very similar to the pure MemBrain average. In the subclass of
MemBrain picks that were missed by PySeg, we observe a smaller
bump on the membrane. On the other hand, the PySeg picks that
MemBrain missed appear to be densities that are suspended above
the membrane and not embedded within it. A further classification
of this subclass can be seen in Figure S4, and the corresponding
class numbers are given in Table S1. It is worth noting that this be-

Table 2

Ablation study: Effects of using a regression target (as compared to classification),
denoised data, the rotational normalization module, and the Mahalanobis distance
(as compared to the Euclidean distance) for 1, 8, and 28 membranes (mbs), respec-
tively.

F1 Score
Method 1 mb 8 mbs 28 mbs
Default MemBrain 0.88 0.91 0.92
Classification 0.79 0.80 0.91
Non-denoised 0.78 0.80 0.85
No normalization 0.81 0.86 0.87
Euclidean Distance 0.86 0.89 0.90

havior of MemBrain is often desirable, since it has been trained to
find exactly these bumps on the membrane (see the PSII average in
the top row of Fig. 5), and one may not want to detect everything
that is close to a membrane, but rather only specific membrane-
embedded proteins. PySeg is a comprehensive data-driven work-
flow, but a specialized pipeline like MemBrain can save time and
effort when the membrane proteins are visually recognizable.

3.2.4. Ablation Study

In our ablation study (Table 2) we show the results of Mem-
Brain with varying experimental settings. First, we explored the
minimum amount of training data that is required to train our
model. Like for most biomedical images, data annotation requires
human expertise and is generally difficult to obtain. In our exper-
iment, we used 1, 8 or 28 annotated membranes in the training
set, and we performed hyperparameter tuning using grid search
for both learning rate (range 3 x 10> to 3 x 10~4) and weight
decay parameters (range 0 to 1 x 10~3), although our pipeline was
quite robust with respect to these parameters. The models were
trained using a batch size of 1024 for up to 5000 epochs, with
early termination in case the validation values stopped decreasing.
As shown in Table 2, even with only one annotated membrane,
MemBrain still achieved an F1 score of 0.88, which far exceeded
EMAN, DeepFinder, and crYOLO (Table 1), even though these other
deep learning networks were trained on the entire training dataset
of 28 membranes. Furthermore, we explored the contribution of
individual components in the MemBrain pipeline. We found that
denoising the tomograms is vital to ensure good performance, as
it simplifies the task by removing the necessity for the model to
learn to cope with noise. In addition, using a CNN for a regression
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PySegean\ MemBrain

Fig. 5. Qualitative comparison of MemBrain and PySeg on Dataset 3. A: MemBrain was trained using the ground truth data from Dataset 1. The trained program was
used to predict particle positions (green) in the test set of Dataset 1. B: The same MemBrain program (trained on Dataset 1) was used to predict particle positions (green) in
Dataset 3. C: PySeg was applied to generate particle positions (green) in Dataset 3. Visualized are the initial picks of PySeg (left) and the picks after cleaning using selection
of 2D rotational averages in PySeg (right). Rotationally symmetrized subtomogram averages were generated from the picks of each pathway (right column). D: Consensus
analysis using subtomogram averages to compare the MemBrain picks and the cleaned PySeg picks. MemBrain \ PySeg .., = positions picked by MemBrain but not PySegean-
MemBrain N PySeg.e., = positions picked by both MemBrain and PySeg ean. PySegqean \ MemBrain = positions picked by PySeg e., but not MemBrain.

task rather than more commonly-used classification also improves
the overall performance of the entire pipeline, particularly when
the training dataset is small. We reason that the induced label
noise from inaccurate manual labeling of particle center positions
has a larger influence on classification than on distance regression,
where the score assignment is smoother. Closely related to this,
we also tested training our network using ground truth distances
assigned using the Euclidean distance instead of the Mahalanobis
distance (GT distances visualized in Figure S3). While MemBrain
gives good results even without the Mahalanobis distance, we can
still see that it is beneficial to also consider particle shapes. Finally,
we explored the influence of our subvolume normalization mod-
ule: The values for “no normalization” correspond to the results for
MemBrain without normalized volumes, but trained with arbitrary
subvolume rotations as data augmentation during training. Again,
especially for the one membrane (1 mb) and eight membranes (8
mbs) settings, the results are worse than our fully trained Mem-
Brain model. This corroborates the importance of our normaliza-
tion module for simplifying the detection problem.

In addition to this ablation study, we performed several other
experiments with varying settings (see Table S4), all of which con-
firm MemBrain’s robustness towards different pipeline parameters.
Notably, when using no data augmentation during training, the
performance does not drop. Nevertheless, we still recommend us-
ing data augmentation, as otherwise picking the best model may
become less robust due to overfitting (see also Supplementary Fig-
ure S5 for an example of overfitting without data augmentation).

4. Conclusion

In this study, we present MemBrain, a deep learning-aided
pipeline that is specialized for automatic detection of membrane-
bound proteins in cryo-electron tomograms. In the preprocess-
ing step, MemBrain uses the membrane geometry and rotates to-

mographic subvolumes into a normalized orientation, which gen-
eralizes the trained CNN to membranes with different orienta-
tions than in the training set. Moreover, this rotation step reduces
the complexity of the protein detection task, and thus, our net-
work can be efficiently trained with a small dataset consisting
of only one annotated membrane. This is experimentally practi-
cal, as the throughput of cryo-ET data acquisition is accelerating,
but the manual annotation remains laborious. We evaluated Mem-
Brain on three different datasets and showed that our pipeline out-
performs other state-of-the-art methods (both conventional and
deep learning-based) for particle picking by a large margin (re-
call: MemBrain >0.90 vs. other methods <0.65). In Dataset 3,
where no ground truth annotations were available, we showed
that MemBrain’s picks resemble membrane-embedded proteins.
Furthermore, MemBrain is able to estimate protein orientations,
which is beyond the current capacities of other deep learning-
based methods. The particle positions and orientations extracted
by MemBrain can be used to analyze the organization of protein
complexes within membranes, revealing how they interact with
each other to drive cellular processes. Since MemBrain is gener-
alizable to unseen data domains, it will likely be applicable to in-
vestigating biological mechanisms in various kinds of membranes,
ranging from protein production in the endoplasmic reticulum to
the bioenergetic reactions in mitochondrial cristae and chloroplast
thylakoids.
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