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a b s t r a c t 

Background and Objective: Cryo-electron tomography (cryo-ET) is an imaging technique that enables 3D 

visualization of the native cellular environment at sub-nanometer resolution, providing unpreceded in- 

sights into the molecular organization of cells. However, cryo-electron tomograms suffer from low signal- 

to-noise ratios and anisotropic resolution, which makes subsequent image analysis challenging. In partic- 

ular, the efficient detection of membrane-embedded proteins is a problem still lacking satisfactory solu- 

tions. 

Methods: We present MemBrain – a new deep learning-aided pipeline that automatically detects 

membrane-bound protein complexes in cryo-electron tomograms. After subvolumes are sampled along a 

segmented membrane, each subvolume is assigned a score using a convolutional neural network (CNN), 

and protein positions are extracted by a clustering algorithm. Incorporating rotational subvolume nor- 

malization and using a tiny receptive field simplify the task of protein detection and thus facilitate the 

network training. 

Results: MemBrain requires only a small quantity of training labels and achieves excellent performance 

with only a single annotated membrane (F1 score: 0.88). A detailed evaluation shows that our fully 

trained pipeline outperforms existing classical computer vision-based and CNN-based approaches by a 

large margin (F1 score: 0.92 vs. max. 0.63). Furthermore, in addition to protein center positions, Mem- 

Brain can determine protein orientations, which has not been implemented by any existing CNN-based 

method to date. We also show that a pre-trained MemBrain program generalizes to tomograms acquired 

using different cryo-ET methods and depicting different types of cells. 

Conclusions: MemBrain is a powerful and annotation-efficient tool for the detection of membrane pro- 

tein complexes in cryo-ET data, with the potential to be used in a wide range of biological studies. It is 

generalizable to various kinds of tomograms, making it possible to use pretrained models for different 

tasks. Its efficiency in terms of required annotations also allows rapid training and fine-tuning of models. 

The corresponding code, pretrained models, and instructions for operating the MemBrain program can be 

found at: https://github.com/CellArchLab/MemBrain . 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cryo-electron tomography (cryo-ET) is performed by acquiring 

rojection images of a frozen sample at numerous different angles 
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sing an electron microscope. Combining the information from all 

hese images yields high-resolution 3D volumes. These molecular 

iews provide a striking new perspective on cellular functions and 

an reveal important insights into both general biological phenom- 

na [1] as well as human diseases including neurodegeneration 

nd cancer [ 2 , 3 ]. About one third of human proteins are associated

ith membranes [4] , which compartmentalize the cell. Membranes 

rganize proteins into microdomains to direct cellular processes, 
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ncluding the bioenergetic reactions in mitochondria and chloro- 

lasts, which produce the energy of life. It is thus an important 

hallenge to identify protein complexes within their native mem- 

rane environment. 

In cryo-ET, particle picking is commonly performed using tem- 

late matching [5] , i.e., a low-pass filtered model of the macro- 

olecular complex of interest is fit to the entire tomogram by 

omputing cross-correlation scores. Since this has to be done for 

ll possible positions and orientations, this approach is computa- 

ionally expensive and yields a noisy output that requires manual 

ost-processing. For membrane-bound proteins, template matching 

s particularly challenging, as these complexes are often small, and 

arge portions of their structures are buried within the membranes, 

hich can reduce their correlation scores with the template. 

As a more specialized approach, PySeg [6] is a template-free 

rocedure for the detection of membrane-bound proteins. It uses 

iscrete Morse theory to trace densities protruding from the mem- 

rane surface. These densities are then clustered using 2D rota- 

ional averages, followed by manual selection of reasonable classes. 

owever, the use of PySeg is complicated by difficult parameter 

uning and the requirement for human intervention. 

Recently, several deep learning-based approaches have been 

roposed for the detection of macromolecular complexes. EMAN 

7] detects various kinds of densities by creating segmentations 

ased on a 2D CNN architecture that utilizes large convolutional 

ernels of size 15 × 15. Therefore, it requires large image patches 

or training, where all present objects of interest must be anno- 

ated with pixel-wise class labels in each of the 2D images. This 

s also the case for DeepFinder [8] , which requires even more an- 

otations, since it utilizes 3D convolutions with a large receptive 

eld and therefore requires 3D voxel-wise class labels. However, 

iven 3D center positions, DeepFinder can automatically gener- 

te coarse voxel annotations using its “sphere-based annotation”

ethod. Another approach is implemented in crYOLO [9] , which 

as initially developed for detecting single particles in 2D cryo-EM 

icrographs, but has since added the option to pick in 3D tomo- 

rams. It is based on the popular object detection framework YOLO 

10] . Instead of creating a segmentation mask first, crYOLO pre- 

icts the bounding boxes of the particles directly. An advantage of 

rYOLO is that it requires only positive labels and uses adjustable 

enalty weights for false negatives and false positives to account 

or incompletely annotated regions. Nevertheless, we experienced 

hat crYOLO still struggles to perform reliable predictions when 

rained with sparse annotations. 

In current cryo-ET analysis workflows, manual particle pick- 

ng is often performed to localize membrane-bound proteins. Even 

ith the guidance of specialized software [ 11 , 12 ], the accurate an-

otation of particles in 3D remains a tedious task. Moreover, to- 

ograms suffer from a low signal-to-noise ratio and anisotropic 

esolution from the missing wedge [13] . Thus, precisely localizing 

rotein complexes remains a major challenge with existing meth- 

ds, especially in large tomograms that involve thousands of pro- 

eins of interest. To enable more in-depth biological discoveries, it 

s necessary to develop automated tools that can be trained on a 

mall number of high-quality annotations to reliably pick particles 

n extensive datasets of many tomograms. 

Here, we present MemBrain: a generalizable deep learning- 

ided pipeline to detect membrane-bound protein complexes in 

ryo-ET. Its training can be performed annotation-efficiently, in 

hat it requires only few particle annotations to reach a good per- 

ormance. In contrast to other approaches, MemBrain utilizes the 

embrane geometry to extract and align subvolumes and thereby 

chieves model invariance to unseen membrane orientations. Fur- 

hermore, instead of classifying each subvolume into binary classes 

i.e., particle vs. non-particle), we show that score assignment 

ased on the regression of distance to the nearest particle can cope 
2 
etter with imprecise ground-truth positions, which commonly oc- 

ur in manual labelling. As an additional feature, MemBrain can 

xtract particle orientations, in contrast to common detection net- 

orks that only provide particle positions. To our knowledge, this 

s the first deep learning-aided pipeline that is specialized for the 

etection of membrane-bound proteins. 

. Methodology 

.1. Overview of MemBrain 

Fig. 1 illustrates the workflow of our pipeline. As an input, 

e use membrane segmentations from raw cryo-electron tomo- 

rams ( Fig. 1 A). For example, these segmentations can be gener- 

ted using TomoSegMemTV [14] , followed by manual curation, as 

emonstrated in [12] . In the first step, we sample points uniformly 

long the segmented membrane and identify their corresponding 

embrane normal vectors. Subsequently, subvolumes are extracted 

round each sampled position and rotated so that the membrane 

s parallel to the x-y plane (pre-processing step, Fig. 1 B). These 

ligned subvolumes are then fed into a CNN, which assigns each 

ubvolume a score indicating its distance to a particle center (scor- 

ng step, Fig. 1 C). Finally, particle center positions and orientations 

re extracted using Mean Shift clustering [15] (post-processing 

tep, Fig. 1 D). We provide a detailed explanation of each step 

elow. 

.2. Subvolume Sampling and Preprocessing 

.2.1. Point Sampling and Normal Voting 

First, we manually specify which side of the membrane should 

e picked. This is done by clicking on the desired side of the mem- 

rane segmentation (illustrated in Figure S1A). Next, MemBrain 

amples points all over the selected membrane surface (see sam- 

led positions in Fig. 1 B). More specifically, we compute the dis- 

ance of any voxel in the tomogram to the membrane and thresh- 

ld this distance to mask the neighborhood of the segmentation 

see Fig. S1B; in all our experiments, we used a maximum dis- 

ance of 15 voxels). Then, for each point in this neighborhood, we 

nd its nearest voxel on the segmented membrane surface. These 

oints on the surface represent our sampled points. The connec- 

ion vector between them and the original points in the neighbor- 

ood serve as a membrane normal vector. 

However, points in the membrane neighborhood that are very 

lose to the surface tend to have non-reliable normal vectors. On 

he other hand, only considering points with large distances leads 

o non-uniform point sampling on the membrane surface. There- 

ore, we apply Normal Voting [ 16 , 17 ], which is an algorithm that

orrects normal vectors via weighted averaging, while also taking 

he membrane curvature into account. By giving a higher weight to 

he reliable normal vectors (from long-distance points), we achieve 

oth a uniform sampling of points on the membrane surface and a 

eliable estimation of normal vectors. 

.2.2. Subvolume Extraction and Rotation 

For each sampled position on the membrane surface, we extract 

 small subvolume. The exact size of the subvolume should depend 

n the size of the protein complex we aim to detect. In our exper- 

ments, we use a subvolume size of 12 × 12 × 12 voxels. We ob- 

erved this size to be quite robust to different protein dimensions, 

ut it can be adjusted if needed. Next, we rotate each subvolume 

sing its corresponding normal vector so that the membrane con- 

ained in the subvolume is aligned to the x-y plane, i.e., the mem- 

rane normal vector is parallel to the z-axis (see rotated volume in 

ig. 1 B). This rotation step is critical to guarantee that our detec- 
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Fig. 1. The MemBrain processing pipeline. A: An example 2D slice of a cryo-electron tomogram (denoised using Cryo-CARE [25] , scale bar: 100 nm) and corresponding 

membrane segmentations (3D view of all segmented membranes). B: Pre-processing step: Top: Points (white) are sampled, and subvolumes (green) are extracted around 

each point. Bottom: Subvolumes are aligned. C: Scoring step: The CNN predicts the distance of each subvolume to the nearest particle center. D: Post-processing: Particle 

centers and orientations are extracted using Mean Shift clustering. 
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ion is invariant to different membrane orientations, as we elabo- 

ate in Section 3 . 

.3. Convolutional Neural Network 

.3.1. Architecture 

The preprocessing steps of MemBrain reduce the task of protein 

etection in the entire tomogram to the detection of densities pro- 

ruding from the membrane. Since the context, i.e., the location of 

he membrane, is already given by the membrane segmentation, 

ur network does not need to learn it. Therefore, we can neglect 

arge-scale features and use a small network architecture, result- 

ng in a tiny receptive field of the convolutional layers. In our ex- 

eriments, we only used four consecutive 3D convolutional layers, 

ollowed by a single fully connected layer. The network outputs a 

ingle value to indicate the distance of the subvolume to the near- 

st protein center. The detailed network architecture is shown in 

able S2. 

.3.2. Label Assignment 

For training, we assign labels to each input subvolume based 

n its center point’s distance to the closest protein complex cen- 

er. However, protein structures are generally not spherical. There- 

ore, instead of using the Euclidean distance to assign the distance 

alues, we use the Mahalanobis distance [18] , which weights dis- 

ances in each direction based on a covariance matrix, thus tak- 

ng the protein shape into account (visualized in Figure S3). The 

ovariance matrix is extracted from the low-pass filtered structure 

hat was also used for generating ground truth positions and orien- 

ations of the respective protein. This can, for example, be a struc- 
3 
ure acquired from the Protein Data Bank (PDB) or from a previous 

veraging experiment. 

.3.3. Optimization Details 

Even with substantial effort in manual annotation, our ground- 

ruth labels are not perfectly accurate, as manually picked po- 

itions always deviate slightly from the exact particle locations. 

oreover, it is almost unavoidable to miss some protein com- 

lexes. Therefore, we chose to optimize the smooth L1 loss func- 

ion [19] , which is more robust with respect to outliers compared 

o the commonly used mean squared error (MSE). We use the 

dam [20] optimizer to minimize the loss function. To improve 

raining stability, we incorporate several batch normalization lay- 

rs [21] . Finally, as regularization techniques to make the training 

ore stable and avoid overfitting, we use a combination of weight 

ecay and data augmentation. In particular, we use random ro- 

ations around the z-axis and random flipping along the x- and 

-axes to artificially increase the number of samples, as well as 

dding Gaussian noise to the subvolumes [22] . All of these aug- 

entation methods are performed on-the-fly during training for 

ach iteration. 

.4. Post-processing 

.4.1. Mean Shift Clustering 

We utilize the distance heatmap that results from our network 

redictions to extract particle positions. For this, we use only the 

oints with a predicted distance less than a threshold (depending 

n the protein complex size) to perform our adapted version of 

ean Shift clustering, where we have added a hierarchical cluster 

eparation step. Mean Shift [15] is an iterative approach that re- 
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nes cluster centers based on a moving weighted average in each 

teration. The only required parameter is the bandwidth, which 

pecifies the radius of points considered for the weighted aver- 

ge. Using a large bandwidth leads to particle clusters that are 

erged, whereas a small bandwidth can cause one particle to split 

nto two clusters. To avoid both of these errors, we implemented 

 refined version of Mean Shift: first, we choose a large band- 

idth parameter, leading to relatively large clusters. If one of these 

lusters exceeds a certain size (depending on the protein com- 

lex size), we reprocess it using a lower bandwidth. Thereby, we 

plit merged protein clusters hierarchically. Our version of Mean 

hift also weights single points using the inverse network-assigned 

cores to guide the clustering algorithm towards the correct parti- 

le centers, since points close to the centers tend to have stronger 

i.e., lower) distance values. 

.4.2. Orientation Estimation 

Besides the cluster center, Mean Shift also identifies each point 

hat has converged to the respective cluster center. As the neu- 

al network cannot see a large context, it assigns distance scores 

o the points based on only the densities within the respective 

mall subvolumes: small distances for subvolumes with high pro- 

ein density and large distances for subvolumes with low protein 

ensity. By using the Mahalanobis distance and thus anisotropic 

istance assignments for training, this behavior is further ampli- 

ed. After thresholding these distance scores, only those areas with 

igh enough protein density remain. Thus, we assume that the 

onverged cluster points resemble the rough shapes of the protein 

omplexes. In cases of non-spherical proteins, MemBrain can use 

he cluster points to compute orientations of the detected protein 

omplexes within the membrane. We perform Principal Compo- 

ent Analysis [23] to find the vector that best describes the cluster, 

.e., minimizes the Euclidean distances between the cluster points 

nd the line described by the vector. In combination with the pre- 

iously extracted normal vector, we are able to compute all three 

uler angles describing the protein’s orientation in space. These 

uler angles can then be used to initialize downstream tasks, such 

s subtomogram averaging [13] . 

. Results 

.1. Data Collection and Annotation. 

We evaluated MemBrain using three cryo-ET datasets of dif- 

erent biological samples that were vitrified on EM grids and 

hen thinned with focused ion beam (FIB) milling [24] . Dataset 
ig. 2. The three cryo-ET datasets examined in this study. For each panel, Top: Examp

embrane. The visualized membrane is highlighted in yellow. A: Dataset 1 – Chloroplasts

ryo-CARE [25] . B: Dataset 2 [12] – Chloroplasts inside Chlamydomonas reinhardtii cells, ac

uter segments isolated from wild-type mice, acquired using defocus imaging and denois

4 
 consists of nine tomograms of isolated Spinacia oleracea chloro- 

lasts, acquired with defocus imaging and denoised with the deep 

earning-based Cryo-CARE program [25] . Dataset 2 contains four 

omograms of Chlamydomonas reinhardtii chloroplasts inside native 

ells [12] , acquired with Volta phase plate (VPP) imaging and not 

enoised. Dataset 3 is composed of five tomograms of isolated rod 

uter segments from wild-type mice [26] , acquired without VPP 

nd denoised with Cryo-CARE. Fig. 2 shows example 2D slices of 

ll three datasets, as well as Membranogram views that display 

he different distributions of protein complexes within the mem- 

ranes. More detailed information about acquisition of the datasets 

an be found in the supplementary S.1.1. In all tomograms, mem- 

ranes were segmented using TomoSegMemTV [14] , followed by 

anual curation. For Datasets 1 and 2, particle positions and ori- 

ntations were manually annotated using Membranorama [ 11 , 12 ], 

hereas for Dataset 3, particle positions were generated semiau- 

omatically by an expert using PySeg (see supplementary S.1.2). 

or Dataset 1, a total of 455 membrane segmentations were cre- 

ted, 45 of which were annotated with protein complex locations 

nd orientations for 1641 Photosystem II (PSII) complexes, 471 Cy- 

ochrome b6f (b6f) complexes, and 757 unknown densities (UK). 

ataset 2 contains a total of 31 segmented and annotated mem- 

ranes, including 730 PSII positions, 379 b6f positions and 273 UK 

ositions. For training and validation sets, we used 35 membranes 

rom seven Dataset 1 tomograms. We trained and evaluated with 

SII complexes, as the b6f complexes are so small that they are 

ard to visually identify in some tomograms, and therefore will 

equire further adjustments to be reliably detected. The remain- 

ng two tomograms from Dataset 1, as well as all tomograms from 

atasets 2 and 3, were reserved as test sets. 

.2. Analysis of MemBrain’s Performance 

.2.1. Evaluation Metric 

For evaluating MemBrain’s performance with respect to ground 

ruth particle positions, we compute precision ( P ), recall ( R ), and 

1 score ( F 1 ) of our predicted particle coordinates. For the calcula- 

ion of recall, we define a true positive ( TP R ) as a ground truth (GT)

SII position that has been hit , i.e., a predicted position is within 

 certain radius (in this case, 4.5 voxels). Correspondingly, a false 

egative ( FN R ) is a GT position that is not hit by a predicted posi-

ion. For precision, a true positive ( TP P ) is a predicted position that 

its a GT position (either PSII or unknown densities), and a false 

ositive ( FP P ) is a predicted position that does not hit a GT posi-

ion. The F1 score is computed as the harmonic mean of recall and 
le 2D tomogram slices (scale bars: 100nm), Bottom: Membranogram view of one 

 isolated from Spinacia oleracea , acquired using defocus imaging and denoised with 

quired using Volta phase plate imaging [30] , not denoised. C: Dataset 3 [26] – Rod 

ed with Cryo-CARE. 
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Fig. 3. Visual analysis of predicted positions. For the ground truth panel, Top: 2D slice of a test set tomogram with annotated membranes highlighted in white (scale bar: 

100 nm). Yellow boxes show PSII positions, orange boxes represent unknown density (UK) positions. Bottom: Membranogram views of two membranes from the test set. 

Mapped in are PSII protein structures (yellow) and UK positions (orange cubes). The five other panels show the analysis of predicted positions for all compared methods. 

True positives are highlighted in white, false negatives in magenta, and false positives in cyan. 

p

R

3

w

r

(

s

m

(

l

1

s

t

T

B

(

t

w

i

t

a

t

f

i

I

n

s

i

v

p

t

i

p

recision: 

 = 

T P R 
T P R + F N R 

, P = 

T P P 
T P P + F P P 

, F 1 = 

2 · R · P 

R + P 

.2.2. Quantitative Analysis 

Table 1 shows the performance of MemBrain in comparison 

ith other state-of-the-art deep learning particle picking algo- 

ithms, as well as the commonly used template matching approach 

for more details about the generation of comparison positions, 

ee supplementary S1.3). In addition, Fig. 3 shows how well the 

ethods performed with respect to ground truth on a 2D slice 

top views), as well as two membranes (bottom views). All deep 

earning-methods were trained using 28 membranes from Dataset 

 as the training set (7 membranes were used for the validation 

et), while template matching was performed using a native struc- 

ure of PSII embedded in a membrane density [12] as the reference 
able 1 

enchmarking results on the test sets of Datasets 1 and 2 for Template Matching 

TM) [29] , crYOLO [9] , DeepFinder [8] , EMAN [7] , and MemBrain. 

Dataset Dataset 1 Dataset 2 

Metric Prec Rec F1 Prec Rec F1 

TM [29] 0.39 0.56 0.46 0.40 0.47 0.43 

crYOLO [9] 0.22 0.18 0.20 0.25 0.04 0.07 

DeepFinder [8] 0.54 0.61 0.57 0.28 0.55 0.37 

EMAN [7] 0.63 0.64 0.63 0.47 0.39 0.42 

MemBrain 0.90 0.94 0.92 0.73 0.83 0.78 

t
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t
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t
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l
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y

5 
emplate. For evaluation, we only considered those predictions that 

ere close to an annotated membrane in order to enable compar- 

son to the corresponding ground truth. MemBrain outperformed 

he other methods on the test set of Dataset 1 and even gener- 

lized well to Dataset 2, despite a considerable domain shift be- 

ween these samples. In particular, we emphasize that the recall 

or MemBrain far exceeded the level of the other methods, which 

s an important advance to prevent missing ground-truth particles. 

n comparison, precision is less critical, as there are mature tech- 

iques to clean up false-positive picks, e.g., via subtomogram clas- 

ification [27] . Although DeepFinder picks well in some regions, 

t misses proteins in other regions completely ( Fig. 3 , membrane 

iews), conceivably because the training data does not cover all 

ossible membrane orientations. EMAN already has a mechanism 

o compensate for the lack of particle orientations by perform- 

ng random rotations on the training data. Nonetheless, it did not 

erform as well as MemBrain, demonstrating the importance of 

he subvolume rotation module and the focused detection in our 

ipeline. We conclude that all other methods have limitations in 

his specific context of membrane proteins, as all of them require 

egions in the tomograms that are richly annotated, and expect- 

dly have problems in this setting of very sparse labels. Compared 

o deep learning-based methods, template matching is even more 

ifficult to tune, because the peaks in the detection are mostly 

riggered by the strong membrane signal and often do not corre- 

pond to actual protein complexes. As a result, template matching 

eads to low recall and precision. Besides particle detection, Mem- 

rain can additionally extract particle orientations, which is be- 

ond the current capacities of other deep learning-based methods. 
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Fig. 4. Analysis of particle orientations estimated by MemBrain. Comparison of MemBrain’s 120 true positive picks to the ground truth annotations in the Dataset 1 test 

set. A: Circular heatmap showing differences between ground truth in-plane angles and estimated angles. The long axis of the mapped PSII structure (0 °) is plotted in yellow. 

Note that due to PSII’s two-fold symmetry, the deviation cannot exceed 90 °. B: Histogram of absolute differences between ground truth in-plane angles and estimated angles. 

The mean absolute error (MAE) is indicated in red. 
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Table 2 

Ablation study: Effects of using a regression target (as compared to classification), 

denoised data, the rotational normalization module, and the Mahalanobis distance 

(as compared to the Euclidean distance) for 1, 8, and 28 membranes (mbs), respec- 

tively. 

F1 Score 

Method 1 mb 8 mbs 28 mbs 

Default MemBrain 0.88 0.91 0.92 

Classification 0.79 0.80 0.91 

Non-denoised 0.78 0.80 0.85 

No normalization 0.81 0.86 0.87 

Euclidean Distance 0.86 0.89 0.90 
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ig. 4 shows the distribution of MemBrain’s predicted orientations 

ith respect to the ground truth. We achieved a mean absolute 

rror of 24.4 degrees (maximum possible deviation is 90 degrees 

ue to PSII’s C2 symmetry) on our Dataset 1 test set, which can 

erve as a good initialization for subvolume alignment and make 

he subsequent subtomogram averaging [ 5 , 28 , 29 ] more efficient. A 

omparison of the tracked times for training, prediction, and ex- 

raction of particle positions for all compared models can be found 

n Table S3. 

.2.3. Qualitative Evaluation on Dataset 3 

For Dataset 3, we did not have ground truth protein positions 

o compute quantitative evaluation metrics. Instead, we assessed 

he picks from MemBrain and PySeg using subtomogram averaging 

 Fig. 5 ; for details about the averaging procedure, see supplemen- 

ary S.1.4). First, we trained a MemBrain model using the ground 

ruth data from Dataset 1 (the same model as for the previous sec- 

ion), which reliably picked PSII complexes in this spinach dataset 

 Table 1 ; Fig. 5 A). Then, we applied this pre-trained MemBrain 

odel to predict membrane-bound protein positions in the mouse 

od outer segments of Dataset 3 ( Fig. 5 B). For comparison, we also

redicted membrane-bound protein positions in Dataset 3 using 

ySeg ( Fig. 5 C). Subtomogram averaging of the MemBrain picks, 

ySeg picks, as well as intersection and difference sets between 

hese picks revealed interesting differences between the two detec- 

ion algorithms. In both Datasets 1 and 3, MemBrain consistently 

icks densities that are embedded in the membranes and appear 

s small bumps. In contrast, PySeg was configured to pick all den- 

ities over the membranes regardless of their shape. This initial 

icking was refined after the first cleaning step, where the ex- 

ert selected automatically generated 2D rotational average classes 

hat indicated a density on the membrane (PySeg clean , see supple- 

entary S.1.2, and Figure S2). Thus, PySeg picks a wider variety of 

articles, resulting in a different average. Looking at the consen- 

us analysis ( Fig. 5 D), we can see that PySeg picks often coincide

ith MemBrain picks, and the average of this intersection subclass 

ooks very similar to the pure MemBrain average. In the subclass of 

emBrain picks that were missed by PySeg, we observe a smaller 

ump on the membrane. On the other hand, the PySeg picks that 

emBrain missed appear to be densities that are suspended above 

he membrane and not embedded within it. A further classification 

f this subclass can be seen in Figure S4, and the corresponding 

lass numbers are given in Table S1. It is worth noting that this be-
6

avior of MemBrain is often desirable, since it has been trained to 

nd exactly these bumps on the membrane (see the PSII average in 

he top row of Fig. 5 ), and one may not want to detect everything

hat is close to a membrane, but rather only specific membrane- 

mbedded proteins. PySeg is a comprehensive data-driven work- 

ow, but a specialized pipeline like MemBrain can save time and 

ffort when the membrane proteins are visually recognizable. 

.2.4. Ablation Study 

In our ablation study ( Table 2 ) we show the results of Mem- 

rain with varying experimental settings. First, we explored the 

inimum amount of training data that is required to train our 

odel. Like for most biomedical images, data annotation requires 

uman expertise and is generally difficult to obtain. In our exper- 

ment, we used 1, 8 or 28 annotated membranes in the training 

et, and we performed hyperparameter tuning using grid search 

or both learning rate (range 3 × 10 −5 to 3 × 10 −4 ) and weight 

ecay parameters (range 0 to 1 × 10 −3 ), although our pipeline was 

uite robust with respect to these parameters. The models were 

rained using a batch size of 1024 for up to 50 0 0 epochs, with

arly termination in case the validation values stopped decreasing. 

s shown in Table 2 , even with only one annotated membrane, 

emBrain still achieved an F1 score of 0.88, which far exceeded 

MAN, DeepFinder, and crYOLO ( Table 1 ), even though these other 

eep learning networks were trained on the entire training dataset 

f 28 membranes. Furthermore, we explored the contribution of 

ndividual components in the MemBrain pipeline. We found that 

enoising the tomograms is vital to ensure good performance, as 

t simplifies the task by removing the necessity for the model to 

earn to cope with noise. In addition, using a CNN for a regression 
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Fig. 5. Qualitative comparison of MemBrain and PySeg on Dataset 3. A: MemBrain was trained using the ground truth data from Dataset 1. The trained program was 

used to predict particle positions (green) in the test set of Dataset 1. B: The same MemBrain program (trained on Dataset 1) was used to predict particle positions (green) in 

Dataset 3. C: PySeg was applied to generate particle positions (green) in Dataset 3. Visualized are the initial picks of PySeg (left) and the picks after cleaning using selection 

of 2D rotational averages in PySeg (right). Rotationally symmetrized subtomogram averages were generated from the picks of each pathway (right column). D: Consensus 

analysis using subtomogram averages to compare the MemBrain picks and the cleaned PySeg picks. MemBrain \ PySeg clean = positions picked by MemBrain but not PySeg clean . 

MemBrain ∩ PySeg clean = positions picked by both MemBrain and PySeg clean . PySeg clean \ MemBrain = positions picked by PySeg clean but not MemBrain. 
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ask rather than more commonly-used classification also improves 

he overall performance of the entire pipeline, particularly when 

he training dataset is small. We reason that the induced label 

oise from inaccurate manual labeling of particle center positions 

as a larger influence on classification than on distance regression, 

here the score assignment is smoother. Closely related to this, 

e also tested training our network using ground truth distances 

ssigned using the Euclidean distance instead of the Mahalanobis 

istance (GT distances visualized in Figure S3). While MemBrain 

ives good results even without the Mahalanobis distance, we can 

till see that it is beneficial to also consider particle shapes. Finally, 

e explored the influence of our subvolume normalization mod- 

le: The values for “no normalization” correspond to the results for 

emBrain without normalized volumes, but trained with arbitrary 

ubvolume rotations as data augmentation during training. Again, 

specially for the one membrane (1 mb) and eight membranes (8 

bs) settings, the results are worse than our fully trained Mem- 

rain model. This corroborates the importance of our normaliza- 

ion module for simplifying the detection problem. 

In addition to this ablation study, we performed several other 

xperiments with varying settings (see Table S4), all of which con- 

rm MemBrain’s robustness towards different pipeline parameters. 

otably, when using no data augmentation during training, the 

erformance does not drop. Nevertheless, we still recommend us- 

ng data augmentation, as otherwise picking the best model may 

ecome less robust due to overfitting (see also Supplementary Fig- 

re S5 for an example of overfitting without data augmentation). 

. Conclusion 

In this study, we present MemBrain, a deep learning-aided 

ipeline that is specialized for automatic detection of membrane- 

ound proteins in cryo-electron tomograms. In the preprocess- 

ng step, MemBrain uses the membrane geometry and rotates to- 
7 
ographic subvolumes into a normalized orientation, which gen- 

ralizes the trained CNN to membranes with different orienta- 

ions than in the training set. Moreover, this rotation step reduces 

he complexity of the protein detection task, and thus, our net- 

ork can be efficiently trained with a small dataset consisting 

f only one annotated membrane. This is experimentally practi- 

al, as the throughput of cryo-ET data acquisition is accelerating, 

ut the manual annotation remains laborious. We evaluated Mem- 

rain on three different datasets and showed that our pipeline out- 

erforms other state-of-the-art methods (both conventional and 

eep learning-based) for particle picking by a large margin (re- 

all: MemBrain > 0.90 vs. other methods < 0.65). In Dataset 3, 

here no ground truth annotations were available, we showed 

hat MemBrain’s picks resemble membrane-embedded proteins. 

urthermore, MemBrain is able to estimate protein orientations, 

hich is beyond the current capacities of other deep learning- 

ased methods. The particle positions and orientations extracted 

y MemBrain can be used to analyze the organization of protein 

omplexes within membranes, revealing how they interact with 

ach other to drive cellular processes. Since MemBrain is gener- 

lizable to unseen data domains, it will likely be applicable to in- 

estigating biological mechanisms in various kinds of membranes, 

anging from protein production in the endoplasmic reticulum to 

he bioenergetic reactions in mitochondrial cristae and chloroplast 

hylakoids. 
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