118 research outputs found

    Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels

    Get PDF
    Purpose: To obtain and evaluate carbopol hydrogel/sorbitan monostearate-almond oil-based organogel biphasic formulations (bigels) as a semi-solid vehicle for medicated topical applications.Methods: Bigel formulations were obtained under mild conditions at a hydrogel/organogel ratio of 80/20, 70/30, and 60/40 (w/w). Their stability, viscosity, spreadability, microarchitecture, and acute skin toxicity were evaluated.Results: Two formulations, prepared at ratios of 80/20 and 70/30, were stable based on intermediate stability testing, and had a similar viscosity and spreadability (38.0 ± 1.0 mm and 37.3 ± 0.6 mm, p > 0.05, respectively). Both of these formulations had a bimodal droplet size distribution and very similar values for the droplet mean diameter (0.33 ± 0.05 μm and 2.35 ± 0.44; and 0.34 ± 0.04 μm and 2.59 ± 0.21 μm). The formulation obtained at a ratio of 60/40 was unstable during storage. The in vivo results did not reveal any signs of skin toxicity.Conclusion: Considering their beneficial properties, the developed bigels are a potential semi-solid vehicle for topical application and exhibit a moisturizing effect.Keywords: Almond oil, Bigels, Carbopol hydrogel, Moisturizing effect, Organogel, Sorbitan monostearat

    Nature of Intra-night Optical Variability of BL Lacertae

    Full text link
    We present the results of extensive multi-band intra-night optical monitoring of BL Lacertae during 2010--2012. BL Lacertae was very active in this period and showed intense variability in almost all wavelengths. We extensively observed it for a total for 38 nights; on 26 of them observations were done quasi-simultaneously in B, V, R and I bands (totaling 113 light curves), with an average sampling interval of around 8 minutes. BL Lacertae showed significant variations on hour-like timescales in a total of 19 nights in different optical bands. We did not find any evidence for periodicities or characteristic variability time-scales in the light curves. The intranight variability amplitude is generally greater at higher frequencies and decreases as the source flux increases. We found spectral variations in BL Lacertae in the sense that the optical spectrum becomes flatter as the flux increases but in several flaring states deviates from the linear trend suggesting different jet components contributing to the emission at different times.Comment: 12 Pages, 5 figures, 3 Tables, Accepted for Publication in MNRA

    Optical and Radio Variability of BL Lacertae

    Full text link
    We observed the prototype blazar, BL Lacertae, extensively in optical and radio bands during an active phase in the period 2010--2013 when the source showed several prominent outbursts. We searched for possible correlations and time lags between the optical and radio band flux variations using multifrequency data to learn about the mechanisms producing variability. During an active phase of BL Lacertae, we searched for possible correlations and time lags between multifrequency light curves of several optical and radio bands. We tried to estimate any possible variability timescales and inter-band lags in these bands. We performed optical observations in B, V, R and I bands from seven telescopes in Bulgaria, Georgia, Greece and India and obtained radio data at 36.8, 22.2, 14.5, 8 and 4.8 GHz frequencies from three telescopes in Ukraine, Finland and USA. Significant cross-correlations between optical and radio bands are found in our observations with a delay of cm-fluxes with respect to optical ones of ~250 days. The optical and radio light curves do not show any significant timescales of variability. BL Lacertae showed many optical 'mini-flares' on short time-scales. Variations on longer term timescales are mildly chromatic with superposition of many strong optical outbursts. In radio bands, the amplitude of variability is frequency dependent. Flux variations at higher radio frequencies lead the lower frequencies by days or weeks. The optical variations are consistent with being dominated by a geometric scenario where a region of emitting plasma moves along a helical path in a relativistic jet. The frequency dependence of the variability amplitude supports an origin of the observed variations intrinsic to the source.Comment: 10 pages, 9 figures, Accepted for publication in A&

    The Black Sea Physics Analysis and Forecasting System within the Framework of the Copernicus Marine Service

    Get PDF
    This work describes the design, implementation and validation of the Black Sea physics analysis and forecasting system, developed by the Black Sea Physics production unit within the Black Sea Monitoring and Forecasting Center as part of the Copernicus Marine Environment and Monitoring Service. The system provides analyses and forecasts of the temperature, salinity, sea surface height, mixed layer depth and currents for the whole Black Sea basin, excluding the Azov Sea, and has been operational since 2016. The system is composed of the NEMO (v 3.4) numerical model and an OceanVar scheme, which brings together real time observations (in-situ temperature and salinity profiles, sea level anomaly and sea surface temperature satellite data). An operational quality assessment framework is used to evaluate the accuracy of the products which set the basic standards for the future upgrades, highlighting the strengths and weaknesses of the model and the observing system in the Black Sea

    Black sea observing system

    Get PDF
    The ultimate goal of modern operational oceanography are end user oriented products with high scientific quality. Beneficiaries are the governmental services, coast and offshore based enterprises and research institutions that make use of the products generated by operational oceanography. Direct users are coastal managers, shipping, search and rescue, oil spill combat, offshore industry, ports, fishing, tourism, and recreation industry. Indirect beneficiaries, through climate forecasting based on ocean observations, are food, energy, water and medical suppliers. Availability of updated information on the actual state as well as forecast of marine environment is essential for the success and safety of maritime operations in the offshore industry. Various systems for the collection and presentation of marine data for the needs of different users have been developed and put in operation in the Black Sea. The systems are located both along the coast and in the open sea and the information they provide is used by both the maritime industry and the widest range of users. The Black Sea Monitoring and Forecasting Center in the frame of the Copernicus Marine Service is providing regular and systematic information about the physical state of the ocean, marine ecosystem and wave conditions in the Black Sea area, assimilating observations, keeping efficient operations, advanced technology and high quality modeling products. Combining and optimizing in situ, remote sensing, modeling and forecasting into a Black Sea observing system is a task that has to be solved, and that will allow to get a more complete and comprehensive picture of the state of the marine environment as well as to forecast future changes of physical and biogeochemical state of the Black Sea and the Black Sea ecosystem

    GRIDA3—a shared resources manager for environmental data analysis and applications

    Get PDF
    GRIDA3 (Shared Resources Manager for Environmental Data Analysis and Applications) is a multidisciplinary project designed to deliver an integrated system to forge solutions to some environmental challenges such as the constant increase of polluted sites, the sustainability of natural resources usage and the forecast of extreme meteorological events. The GRIDA3 portal is mainly based on Web 2.0 technologies and EnginFrame framework. The portal, now at an advanced stage of development, provides end-users with intuitive Web-interfaces and tools that simplify job submission to the underneath computing resources. The framework manages the user authentication and authorization, then controls the action and job execution into the grid computing environment, collects the results and transforms them into an useful format on the client side. The GRIDA3 Portal framework will provide a problem-solving platform allowing, through appropriate access policies, the integration and the sharing of skills, resources and tools located at multiple sites across federated domains

    Multiwavelength Intraday Variability of the BL Lac S5 0716+714

    Full text link
    We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The variability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the source's intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL\,Lac type object, is remarkably high.Comment: 16 pages, 15 figures, table 2; Accepted for Publication in MNRA

    Multi-scale lidar measurements suggest miombo woodlands contain substantially more carbon than thought

    Get PDF
    Miombo woodlands are integral to livelihoods across southern Africa, biodiversity in the region, and the global carbon cycle, making accurate and precise monitoring of their state and change essential. Here, we assembled a terrestrial and airborne lidar dataset covering 50 kha of intact and degraded miombo woodlands, and generated aboveground biomass estimates with low uncertainty via direct 3D measurements of forest structure. We found 1.71 ± 0.09 TgC was stored in aboveground biomass across this landscape, between 1.5 and 2.2 times more than the 0.79–1.14 TgC estimated by conventional methods. This difference is in part owing to the systematic underestimation of large trees by allometry. If these results were extrapolated across Africa’s miombo woodlands, their carbon stock would potentially require an upward revision of approximately 3.7 PgC, implying we currently underestimate their carbon sequestration and emissions potential, and disincentivise their protection and restoration

    Optical photometry of GM Cep: evidence for UXor type of variability

    Full text link
    Results from optical photometric observations of the pre-main sequence star GM Cep are reported in the paper. The star is located in the field of the young open cluster Trumpler 37 - a region of active star formation. GM Cep shows a large amplitude rapid variability interpreted as a possible outburst from EXor type in previous studies. Our data from BVRI CCD photometric observations of the star are collected from June 2008 to February 2011 in Rozhen observatory (Bulgaria) and Skinakas observatory (Crete, Greece). A sequence of sixteen comparison stars in the field of GM Cep was calibrated in the BVRI bands. Our photometric data for a 2.5 years period show a high amplitude variations (Delta V ~ 2.3m) and two deep minimums in brightness are observed. The analysis of collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. On the other hand, high amplitude rapid variations in brightness typical for the Classical T Tauri stars also present on the light curve of GM Cep. Comparing our results with results published in the literature, we conclude that changes in brightness are caused by superposition of both: (1) magnetically channeled accretion from the circumstellar disk, and (2) occultation from circumstellar clouds of dust or from features of a circumstellar disk.Comment: 7 pages, 3 figures, accepted for publication in Ap&S
    • …
    corecore