11 research outputs found

    Pilot Rainwater Harvesting Study Ireland

    Get PDF
    There are no National Water Quality Standards for Rainwater Harvesting supply in Ireland. The Development Technology Centre (DTC) at the Technological University Dublin was commissioned by the National Rural Water Monitoring Committee in 2005 to assess the feasibility of using rainwater harvesting to supplement treated mains water for non-potable uses. The project involved the design, installation, commissioning and monitoring of rainwater harvesting facilities for rural domestic and agricultural water supply. This paper will present the results from the domestic pilot rwh project. A dual water supply system was designed and installed to use rainwater collected from the roof surface to supplement mains water supply for toilet flushing and out door uses. A series of flow meters and a data logger system were installed to monitor micro component household water usage. Over the 19 month monitoring period, rainwater harvesting resulted in a saving of 20% of the total mains water supplied to the house. Harvested rainwater was tested monthly for physico-chemical and microbiological parameters. All samples complied with EU bathing Water Regulations. Compliance with the more stringent Drinking Water Regulations was achieved for ten of the nineteen sampling dates. Laboratory experiments were conducted using a variety of water related bacteria to determine time required to reduce a bacterial population by 90% at a given temperature. The laboratory experiments showed that hot water systems maintained at adequately high temperatures (60 0C) for 5 minutes effectively reduced the bacterial load from E.coli, Enterococcus faecalis, Pseudomonas sp and Salmonella to zero

    Physicochemical and Microbiological quality of harvested rainwater from an agricultural installation in Ireland

    Get PDF
    Members of DTC Research Group. Dublin Institute of Technology was commissioned in 2005 by the Department of Environment, Heritage and Local Government in Ireland to assess the feasibility of utilising rainwater to replace treated mains water for nonpotable uses. The project involved the design, installation, commissioning and monitoring of rainwater harvesting on a farm. Two monitoring programmes, Regime 1 and Regime 2, examined the physicochemical and microbiological quality of the harvested rainwater. Samples were taken monthly and tested. Regime 1 analysis showed that the microbiological quality of the rainwater from the site did not comply with the requirements of the European Communities Quality of Bathing Water Regulations, while the physicochemical quality complied with both Bathing and Drinking Water Standards with the exception of ammonia and lead. Regime 2 results showed a significant improvement and were compliant with the European Communities Quality of Bathing Water Regulations and showed near compliance with the European Communities Drinking Water Regulation

    Physicochemical and microbiological quality of water from a pilot domestic rainwater harvesting facility in Ireland.

    Get PDF
    DTC Research Group, Dublin Institute of Technology personnel were commissioned in 2005 by the Department of Environment, Heritage and Local Government in Ireland to assess the feasibility of utilising harvested rainwater to replace treated mains water, for non-potable uses. A pilot project was set up. The project involved the design, installation, commissioning and monitoring of rainwater harvesting facilities in a rural housing development. A monitoring program was carried out to examine the physico-chemical and microbiological quality of the harvested rainwater. Harvested rainwater was sampled monthly and tested. Analysis of the harvested rainwater quality showed a consistently high quality of raw water in general compliance with the requirements of the European Communities (Quality of Bathing Water) Regulations for 100 % of samples and the European Communities (Drinking Water) Regulations, 2007 for 37% of sampling date

    Rainwater Harvesting Pilot Project Report

    Get PDF
    The rainwater harvesting pilot project was commissioned by the National Rural Water Monitoring Committee in 2005 to assess the feasibility of supplementing treated mains water used for non-potable purposes. The project involved the design, installation, commissioning and monitoring of rainwater harvesting facilities in a rural housing development in County Carlow and in a 250-acre livestock farm in County Meath. Construction was carried out between 2005-2007

    Water Savings and Rainwater Harvesting – Pilot Project in Ireland

    Get PDF
    A pilot project to harvest rainwater was set up in Ireland in 2005 to examine the potential of using rainwater harvesting systems to replace treated mains water, for non-potable uses. The Project has two strands to it. The agricultural application assessed the feasibility of incorporating rainwater supply to supplement/replace mains or other water supplies for farms. The second strand involves rural water supply to domestic dwellings. Here the project installed rainwater harvesting and water conservation devices as part of a pilot project to assess the reduction in domestic demand. This paper will examine the water use recorded on both sites. It will present the findings of flow monitoring carried out on the agricultural site. Water savings will be presented in terms of rainwater volumes substituted for mains water, and in terms of economic savings, to the enduser and to the water producer. Water use will be compared with existing data available on water use on the farm. In the domestic situation, baseline results from non-rainwater harvesting houses monitored as part of the project will be compared with results from those fitted with rainwater harvesting. Water savings will be presented and discussed in terms of volume reduction in public water use and economic savings to user and producer

    The temporal clustering of storm surge, wave height, and high sea level exceedances around the UK coastline

    No full text
    AbstractThe temporal clustering of storms presents consecutive storm surge and wave hazards that can lead to amplified flood and erosional damages; thus, clustering is important for coastal stakeholders to consider. We analyse the prevalence of storm clustering around the UK coastline by examining the temporal and spatial characteristics of storm surge, wave height, and high still sea level exceedances at the 1 in 1- and 5-year return levels. First, at the interannual timescale, we show that there are periods of high/low exceedance counts on national and regional scales. Elevated annual counts of exceedances with smaller magnitudes can occur without a respective signal of higher-magnitude exceedances. Secondly, at the intra-annual timescale, we show that high proportions of exceedances are clustering over short timescales. Storm surge, wave height and still sea level exceedances occurring < 50 days after the prior exceedance at a given site account for between ~ 35–44% and ~ 15–22% of all exceedances at the 1 in 1- and 5-year return levels, respectively. Still sea levels have the highest proportion of exceedances clustered in quick succession, with ~ 25% of 1 in 1-year exceedances occurring < 2 days after the previous at the same site. Spatially, for UK storm surges and still sea levels, the North Sea has the lowest proportion of clustering, whereas the North Atlantic and Bristol Channel have the highest. For English wave records, the highest proportions of clustering are found in the North Sea for exceedances of a lower magnitude and the English Channel for exceedances of a higher magnitude. These findings illuminate the prevalence of the clustering of coastal hazards around the UK—helping coastal stakeholders evaluate the threat of surges, waves, and sea levels clustering over short periods

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally

    The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    Get PDF
    © 2017 British Journal of Anaesthesia Background: The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Methods: Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of elective in-patient surgery, accompanied by a systematic review and meta-analysis of published literature. The exposure was surgical safety checklist use. The primary outcome was in-hospital mortality and the secondary outcome was postoperative complications. In the ISOS cohort, a multivariable multi-level generalized linear model was used to test associations. To further contextualise these findings, we included the results from the ISOS cohort in a meta-analysis. Results are reported as odds ratios (OR) with 95% confidence intervals. Results: We included 44 814 patients from 497 hospitals in 27 countries in the ISOS analysis. There were 40 245 (89.8%) patients exposed to the checklist, whilst 7508 (16.8%) sustained ≥1 postoperative complications and 207 (0.5%) died before hospital discharge. Checklist exposure was associated with reduced mortality [odds ratio (OR) 0.49 (0.32–0.77); P\u3c0.01], but no difference in complication rates [OR 1.02 (0.88–1.19); P=0.75]. In a systematic review, we screened 3732 records and identified 11 eligible studies of 453 292 patients including the ISOS cohort. Checklist exposure was associated with both reduced postoperative mortality [OR 0.75 (0.62–0.92); P\u3c0.01; I2=87%] and reduced complication rates [OR 0.73 (0.61–0.88); P\u3c0.01; I2=89%). Conclusions: Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine
    corecore