322 research outputs found
Rich Counter-Examples for Temporal-Epistemic Logic Model Checking
Model checking verifies that a model of a system satisfies a given property,
and otherwise produces a counter-example explaining the violation. The verified
properties are formally expressed in temporal logics. Some temporal logics,
such as CTL, are branching: they allow to express facts about the whole
computation tree of the model, rather than on each single linear computation.
This branching aspect is even more critical when dealing with multi-modal
logics, i.e. logics expressing facts about systems with several transition
relations. A prominent example is CTLK, a logic that reasons about temporal and
epistemic properties of multi-agent systems. In general, model checkers produce
linear counter-examples for failed properties, composed of a single computation
path of the model. But some branching properties are only poorly and partially
explained by a linear counter-example.
This paper proposes richer counter-example structures called tree-like
annotated counter-examples (TLACEs), for properties in Action-Restricted CTL
(ARCTL), an extension of CTL quantifying paths restricted in terms of actions
labeling transitions of the model. These counter-examples have a branching
structure that supports more complete description of property violations.
Elements of these counter-examples are annotated with parts of the property to
give a better understanding of their structure. Visualization and browsing of
these richer counter-examples become a critical issue, as the number of
branches and states can grow exponentially for deeply-nested properties.
This paper formally defines the structure of TLACEs, characterizes adequate
counter-examples w.r.t. models and failed properties, and gives a generation
algorithm for ARCTL properties. It also illustrates the approach with examples
in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been
implemented, first by extending the NuSMV model checker to generate and export
branching counter-examples, secondly by providing an interactive graphical
interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
SMT-Solvers in Action: Encoding and Solving Selected Problems in NP and EXPTIME
We compare the efficiency of seven modern SMT-solvers for several decision and combinatorial problems: the bounded Post correspondence problem (BPCP), the extended string correction problem (ESCP), and the Towers of Hanoi (ToH) of exponential solutions. For this purpose, we define new original reductions to SMT for all the above problems, and show their complexity. Our extensive experimental results allow for drawing quite interesting conclusions on efficiency and applicability of SMT-solvers depending on the theory used in the encoding
Towards Independent Particle Reconstruction from Cryogenic Transmission Electron Microscopy
Coronary heart disease is the single largest killer of Americans so improved means of detecting risk factors before arterial obstructions appear are expected to lead to a improvement in quality of life with a reduced cost. This paper introduces a new approach to 3-D reconstruction of individual particles based on statistical modeling from a sparse set of 2-D projection images. This paper introduces a new approach to 3-D reconstruction of individual particles based on statistical modeling from a sparse set of 2-D projection images. The method is in contrast to the current state of practice where reconstruction is performed via signal processing or Bayesian methods that use averaged images acquired from an ensemble of particles. As such, this new approach has its impetus in use for novel diagnostic tests such as LDL and HDL particle shape characterization. The approach is also expected to have uses in areas such as quality assurance for drug delivery nano-technologies and for general proteomic studies.
The individual particle reconstruction algorithm is based on a hidden Markov model. Higher order Markov chain statistics, which are generated from the a priori model of the target of interest, can be derived from traditional methods such as single particle reconstruction and/or the underlying physical properties of the particle. By placing the reconstruction voxel space at a 45° angle to the projection image, 4-passes of the HMM processing can be performed from a single image. Reconstruction results from a simple model and a single projection image resulted in better than 98% reconstruction accuracy as compared to the original target
A Logic with Reverse Modalities for History-preserving Bisimulations
We introduce event identifier logic (EIL) which extends Hennessy-Milner logic
by the addition of (1) reverse as well as forward modalities, and (2)
identifiers to keep track of events. We show that this logic corresponds to
hereditary history-preserving (HH) bisimulation equivalence within a particular
true-concurrency model, namely stable configuration structures. We furthermore
show how natural sublogics of EIL correspond to coarser equivalences. In
particular we provide logical characterisations of weak history-preserving (WH)
and history-preserving (H) bisimulation. Logics corresponding to HH and H
bisimulation have been given previously, but not to WH bisimulation (when
autoconcurrency is allowed), as far as we are aware. We also present
characteristic formulas which characterise individual structures with respect
to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407
Molecular Architecture of the Human Mediator–RNA Polymerase II–TFIIF Assembly
The authors perform a cryo-EM study of the 1.9 MDa human Mediator-RNA polymerase II-TFIIF assembly, which reveals the structural organization of the human transcription initiation apparatus
Automata for true concurrency properties
We present an automata-theoretic framework for the model checking of true concurrency properties. These are specified in a fixpoint logic, corresponding to history-preserving bisimilarity, capable of describing events in computations and their dependencies. The models of the logic are event structures or any formalism which can be given a causal semantics, like Petri nets. Given a formula and an event structure satisfying suitable regularity conditions we show how to construct a parity tree automaton whose language is non-empty if and only if the event structure satisfies the formula. The automaton, due to the nature of event structure models, is usually infinite. We discuss how it can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. In order to show the applicability of the approach, we discuss how it instantiates to finite safe Petri nets. As a proof of concept we provide a model checking tool implementing the technique
Recommended from our members
Consistency and Standardization of Color in Medical Imaging: a Consensus Report
This article summarizes the consensus reached at the Summit on Color in Medical Imaging held at the Food and Drug Administration (FDA) on May 8–9, 2013, co-sponsored by the FDA and ICC (International Color Consortium). The purpose of the meeting was to gather information on how color is currently handled by medical imaging systems to identify areas where there is a need for improvement, to define objective requirements, and to facilitate consensus development of best practices. Participants were asked to identify areas of concern and unmet needs. This summary documents the topics that were discussed at the meeting and recommendations that were made by the participants. Key areas identified where improvements in color would provide immediate tangible benefits were those of digital microscopy, telemedicine, medical photography (particularly ophthalmic and dental photography), and display calibration. Work in these and other related areas has been started within several professional groups, including the creation of the ICC Medical Imaging Working Group
Definitions of basic terms relating to polymer liquid crystals (IUPAC Recommendations 2001)
The document first gives definitions of basic terms related to liquid-crystalline and mesomorphic states of matter and then terms specific to the classification of liquid-crystal polymers. The terms have been restricted to those most commonly encountered in the structural description of the latter class of materials. The terms have been selected from the recently published comprehensive document "Definitions of basic terms relating to low-molar-mass and polymer liquid crystals" [Pure and Applied Chemistry 73 (5), 845-895 (2001)] and are intended to form a readily usable guide for the reader interested in the structural description of polymer liquid crystals. The more comprehensive document should be used for terminology associated with types of mesophases and the optical and physical characteristics of liquid-crystalline materials. The advice given by representatives of the International Liquid Crystal Society for the preparation of this document is gratefully acknowledged.Fil:Barón, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Marker-free image registration of electron tomography tilt-series
<p>Abstract</p> <p>Background</p> <p>Tilt series are commonly used in electron tomography as a means of collecting three-dimensional information from two-dimensional projections. A common problem encountered is the projection alignment prior to 3D reconstruction. Current alignment techniques usually employ gold particles or image derived markers to correctly align the images. When these markers are not present, correlation between adjacent views is used to align them. However, sequential pairwise correlation is prone to bias and the resulting alignment is not always optimal.</p> <p>Results</p> <p>In this paper we introduce an algorithm to find regions of the tilt series which can be tracked within a subseries of the tilt series. These regions act as landmarks allowing the determination of the alignment parameters. We show our results with synthetic data as well as experimental cryo electron tomography.</p> <p>Conclusion</p> <p>Our algorithm is able to correctly align a single-tilt tomographic series without the help of fiducial markers thanks to the detection of thousands of small image patches that can be tracked over a short number of images in the series.</p
SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center
A structure of a ribosome stalled during translation of the SecM peptide provides insight into the mechanism by which the large subunit active site is inactivated
- …