821 research outputs found

    More on gapped Goldstones at finite density: More gapped Goldstones

    Get PDF
    It was recently argued that certain relativistic theories at finite density can exhibit an unconventional spectrum of Goldstone excitations, with gapped Goldstones whose gap is exactly calculable in terms of the symmetry algebra. We confirm this result as well as previous ones concerning gapless Goldstones for non-relativistic systems via a coset construction of the low-energy effective field theory. Moreover, our analysis unveils additional gapped Goldstones, naturally as light as the others, but this time with a model-dependent gap. Their exact number cannot be inferred solely from the symmetry breaking pattern either, but rather depends on the details of the symmetry breaking mechanism--a statement that we explicitly verify with a number of examples. Along the way we provide what we believe to be a particularly transparent interpretation of the so-called inverse-Higgs constraints for spontaneously broken spacetime symmetries.Comment: 50 pages. v2: Fixed several typos in equations. Minor modifications to the counting rule. Acknowledgements and references added. Matches JHEP versio

    Static response and Love numbers of Schwarzschild black holes

    Get PDF
    We derive the quadratic action for the physical degrees of freedom of massless spin-0, spin-1, and spin-2 perturbations on a Schwarzschild-(A)dS background in arbitrary dimensions. We then use these results to compute the static response of asymptotically flat Schwarzschild black holes to external fields. Our analysis reproduces known facts about black hole Love numbers-in particular that they vanish for all types of perturbation in four spacetime dimensions-but also leads to new results. For instance, we find that neutral Schwarzschild black holes polarize in the presence of an electromagnetic background in any number of spacetime dimensions except four. Moreover, we calculate for the first time black hole Love numbers for vector-type gravitational perturbations in higher dimensions and find that they generically do not vanish. Along the way, we shed some light on an apparent discrepancy between previous results in the literature, and clarify some aspects of the matching between perturbative calculations of static response on a Schwarzschild background and the point-particle effective theory.</p

    Usefulness of echocardiography in the prognostic evaluation of non-Q-wave myocardial infarction.

    Get PDF
    Patients with non-Q-wave myocardial infarction (MI) are a heterogeneous population with a wide range of coronary disease severity and extent of myocardial necrosis, showing, therefore, different electrocardiographic findings and different outcomes. To evaluate the role of echocardiography in the management of non-Q-wave MI patients, 192 consecutive patients without previous MI were studied (78 with ST segment elevation, 56 with ST depression and 58 without ST modifications). All patients underwent 2-dimensional echocardiography (16-segment model) within 24 hours of admission to the coronary care unit. Wall-motion abnormalities, wall-motion score index, ejection fraction, and end-diastolic and end-systolic volumes were evaluated. In 35 patients, death, reinfarction, recurrent angina, or severe heart failure occurred during the in-hospital phase, whereas the remaining 157 patients had a good outcome. Patients with a poor prognosis were older (68 +/- 6 vs 59 +/- 5 years, p 3 segments 0.28 and 0.86; wall-motion score index > 1.33 = 0.28 and 0.87; end-diastolic volume > 46 mL/m2 = 0.49 and 0.91; ST segment depression and wall-motion abnormalities in > 3 segments 0.60 and 0.88. These results underline the usefulness of echocardiography in the early risk stratification of non-Q-wave MI patients, together with electrocardiographic data. Patients with ST segment depression and more extensive wall-motion abnormalities are at higher risk and their management needs a more aggressive approach

    Genetic pre-participation screening in selected athletes: a new tool for the prevention of sudden cardiac death?

    Get PDF
    Sudden cardiac death (SCD) of athletes is a topical issue. “Borderline cardiac abnormalities”, which occur in ~2% of elite male athletes, may result in SCD, which may have a genetic base. Genetic analysis may help identify pathological cardiac abnormalities. We performed phenotype-guided genetic analysis in athletes who, pre-participation, showed ECG and/or echo “borderline” abnormalities, to discriminate subjects at a greater risk of SCD. Methods: We studied 24 elite athletes referred by the National Federation of Olympic sports; and 25 subjects seeking eligibility to practice agonistic sport referred by the Osservatorio Epidemiologico della Medicina dello Sport della Regione Campania. Inclusion criteria: a) ECG repolarization borderline abnormalities; b) benign ventricular arrhythmias; c) left ventricular wall thickness in the grey zone of physiology versus pathology (max wall thickness 12-15 mm in females; 13-16 mm in males). Based on the suspected phenotype, we screened subjects for the LMNA gene, for 8 sarcomeric genes, 5 desmosomal genes, and cardiac calcium, sodium and potassium channel disease genes. Results: Genetic analysis was completed in 37/49 athletes, 22 competitive and 27 non-competitive athletes, showing “borderline” clinical markers suggestive of hypertrophic cardiomyopathy (HCM,n. 24), dilated cardiomyopathy (n. 4), arrhythmogenic right ventricular dysplasia/cathecholaminergic polymorphic ventricular tachycardia (ARVD/CPVT, n. 11), long QT syndrome (LQTS, n. 4), sick sinus syndrome (SSS, n. 5), Brugada syndrome (BrS, n. 1). We identifyed 11 mutations in 9 athletes (an ARVD athlete was compound heterozygote for the PKP2 gene and an HCM athlete was double heterozygote for the MYBPC3 and TNNT2 genes): 3 known mutations related to LQTS, HCM and ARVD, respectively, and 8 novel mutations, located in the SCN5A, RyR2, PKP2, MYBPC3 and ACTC1 genes. The new mutations were absent in ~800 normal chromosomes and were predicted “probably damaging” by in silico analysis. Patch clamp analysis in channelopathies indicated for some mutation abnormal biophysical behavior of the corresponding mutant protein. Conclusion: Genetic analysis may help distinguish between physiology and pathology in athletes with clinically suspected heart disease

    Full-length TDP-43 and its C-terminal domain form filamentsin vitrohaving non-amyloid properties

    Get PDF
    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature
    • …
    corecore