10 research outputs found

    Annotated checklist of the millipede family Chelodesmidae Cook, 1895 from São Paulo state, Brazil (Diplopoda: Polydesmida)

    Get PDF
    A checklist of the family Chelodesmidae Cook, 1895 (order Polydesmida) from state of São Paulo, Brazil has been performed based on literature and examined material from the collection of the Instituto Butantan, São Paulo (IBSP). A total of 15 genera (7 tribes and 5 genera considered incertae sedis) with 64 species are listed. Among these species, 30 presented a single one record in the state, 19 with more than one record and four recorded for the first time for the state of São Paulo, and 11 species occurring in other Brazilian states. The most distributed species is Brasilodesmus paulistus paulistus (Brölemann, 1902) with 52 records of occurrence. In addition, a complete bibliography list of the chelodesmidan fauna from the state is compiled, as well as distribution maps for all species are provided

    Phylogenetic framework for the tribes of the subfamily Chelodesminae Hoffman, 1980, based on morphological characters (Diplopoda; Polydesmida; Chelodesmidae)

    No full text
    Com aproximadamente 800 espécies descritas, Chelodesmidae constitui a segunda maior família em Polydesmida; seus membros ocorrem na América do Sul (subfamília Chelodesminae) e oeste Africano (subfamília Prepodesminae). Hoffman, ao examinar e ilustrar inúmeros caracteres em seu extensivo trabalho com a família, propôs numerosas tribos, a maioria em Chelodesminae. Empregando o uso de caracteres morfológicos, a monofilia e a relação de 18, das 19 tribos de Chelodesminae, são testadas. Duas matrizes de dados contendo 68 terminais e 70 caracteres e 68 terminais e 65 caracteres foram construídas. Para as análises, foi utilizada pesagem implícita de caracteres am ambas as matrizes de caracteres com valores de concavidade igual a 10,23926 e 15,136, resultando em uma árvore cada. A primeira de 411 passos (IC=21; IR=66) e a segunda de 401 passos (IC=22; IR=65). No atual conjunto de dados, a maioria das tribos propostas é monofilética; exceções são Batodesmini, Leptodesmini, Macrocoxodesmini, Strongylomorphini e Telonychopodini. A tribo monoespecífica Gonorygmatini surge interna a Telonychopodini. A polifilia de Macrocoxodesmini é confirmada. Ambas as árvores de pesagem implícita mostram Chelodesminae monofilética. Assim, a subfamília é composta por, além dos grupos parafiléticos e polifiléticos, pelas tribos monofiléticas: Arthrosolaenomeridini, Caraibodesmini, Chelodesmini, Chondrodesmini, Cornalatini, Dibolostethini, Gonorygmatini, Lepturodesmini, Platinodesmini, Priodesmini, Trichomorphini e Trachelodesmini. Todas são restritas à América do Sul e América Central, bem como as ilhas do CaribeWith close to 800 described species, the Chelodesmidae constitute the second largest family in Polydesmida; its members occurring in South America (subfamily Chelodesminae) and western Africa (subfamily Prepodesminae). Hoffman, examining and illustrating numerous characters in his extensive work on the family, proposed numerous tribes, mainly in the Chelodesminae. Employing morphological characters, the monophyly and the interelationship of the 18 chelodesmine tribes are tested. Two data matrixes were built, one with 68 terminals and 70, and another with 68 terminals and 65 characters. For the analysis, implied weighting was used in both data matrixes with k values as 10,23926 and 15,136, resulting in one tree each. The first with 411 steps (CI=21; RI=66) and the second with 401 steps (CI=22; RI=65). In this dataset, the majority of tribes are monophyletic; exceptions are Batodesmini, Leptodesmini, Macrocoxodesmini, Strongylomorphini e Telonychopodini. The mono-specific tribe Gonorygmatini appears internally to Telonychopodini. The polyphyly of Macrocoxodesmini is confirmed. Both implied weighting trees shows Chelodesminae as monophyletic. This way, the subfamily is composed by, despite the paraphyletic and polyphyletic groups, for the monophyletic tribes: Arthrosolaenomeridini, Caraibodesmini, Chelodesmini, Chondrodesmini, Cornalatini, Dibolostethini, Gonorygmatini, Lepturodesmini, Platinodesmini, Priodesmini, Trichomorphini e Trachelodesmini. All tribes are restrict to South and Central Americas, as well to Caribbean Island

    Taxonomic review and cladistic analysis of the genus Odontopeltis Pocock, 1894 (Diplopoda; Polydesmida; Chelodesmidae)

    No full text
    Uma análise cladística baseada em parcimônia é utilizada para testar o monofiletismo do gênero Odontopeltis e suas relações com outras espécies de gêneros anteriormente relacionados. A matriz de dados compreende 15 terminais e 47 caracteres. A análise cladística com pesagem implícita de caracteres de concavidade igual a 2,012 resultou em uma árvore mais parcimoniosa com 99 passos (IC = 58; IR = 73). As seguintes sinapomorfias sustentam o clado Odontopeltis e são propostas como diagnoses para o gênero: (1) Formato do órgão de Tömösvary sub-oval; (2) borda do ozóporo simples; (3) dobras retrolaterais no acropódito; e (4) presença de um par de macro-cerdas delimitando o fim da região pré-femoral e o início da região femoral, no gonopódio. Para padronização das descrições de genitália, foi analisada toda a terminologia do gonopódio dos machos da família Chelodesmidae. O gonopódio dos machos é, então, formado por peças cujas homologias às peças das pernas é incerta: coxa, cânula, região pré-femoral, processo pré-femoral, região femoral e solenômero. Para o gênero Odontopeltis é proposta uma terminologia da genitália à parte, devido às modificações no gonopódio. O gênero é composto por 13 espécies, sendo oito espécies válidas e cinco insertis sedis, sendo elas: Odontopeltis conspersus, O. anchisteus, O. clarazianus, O. giganteus, O. sp. nov. 1, O. sp. nov. 2, O. sp. nov. 3 e O. sp. nov. 4, e as espécies insertis sedis são: O. próxima, O. gracilipes, O. decoloratus, O. borellii e O. balzanii. A tribo Macrocoxodesmini se mostrou parafilética e, portanto, foi desmembrada. A tribo Telonychopodini se manteve monofilética e o gênero Odontopeltis de fato não pertence a esta tribo.A cladistic analysis based on parsimony is used to test the monophyly of the genus Odontopeltis and its relationship with related genera. The data matrix comprises 15 terminal taxa and 47 characters. The implied weighted analysis, with concavity 2,012, resulted in a 99 steps most parsimonious tree (CI = 58; RI = 73). The following sinapomorphies supports the clade Odontopeltis and are proposed as diagnosis characters for the genus: (1) Tömösvary organ sub-oval shaped; (2) ozopores edge simple; (3) retrolateral rims on acropodite; and (4) presence of macrobristles delimiting the end of the prefemoral region and the beginning of the femoral region, on the gonopods. To standardize the genitalia description, the terminology for the gonopods of the family Chelodesmidae was reviewed. Then, the male gonopods are composed by: coxae, cannula, prefemoral region, prefemoral process, femoral region and solenomere. There is no attempt to relate the homology of legs pieces with gonopod pieces. It\'s proposed a terminology for the gonopods of the genus Odontopeltis due to the modifications on the gonopods. The genus comprises 13 species, where eight are valid species and five are insertis sedis: Odontopeltis conspersus, O. anchisteus, O. clarazianus, O. giganteus, O. sp. nov. 1, O. sp. nov. 2, O. sp. nov. 3 and O. sp. nov. 4, and the insertis sedis species are: O. proxima, O. gracilipes, O. decoloratus, O. borellii and O. balzanii. The Macrocoxodesmini tribe showed as a paraphyletic group and, therefore, was dissolved. The Telonychopodini tribe is monophyletic and the genus Odontopeltis, indeed, do not belong to this tribe

    The spider genus Chrysometa (Araneae, Tetragnathidae) from the Pico da Neblina and Serra do Tapirapecó mountains (Amazonas, Brazil): New species, new records, diversity and distribution along two altitudinal gradients

    No full text
    Eight new species of the spider genus Chrysometa Simon, 1894 (Araneae, Tetragnathidae) are described and illustrated. Chrysometa nubigena n. sp., C. waikoxi n. sp., C. petrasierwaldae n. sp., C. santosi n. sp., C. yanomami n. sp., C. candianii n. sp., C. lomanhungae n. sp., and C. saci n. sp. Those species were collected in a study on the diversity of spider communities along altitudinal gradients in Brazilian Amazonia. C. saci was captured at the Serra do Tapirapecó (Barcelos), while all the other species are from the Pico da Neblina (São Gabriel da Cachoeira), the highest mountain in Brazil. We provide new records for C. boraceia, C. flava, C. guttata, C. minuta and C. opulenta, and we describe the male of C. minuta for the first time. We also present the first results on the diversity and altitudinal distribution of the species of Chrysometa at the Pico da Neblina and Serra do Tapirapecó. We sampled the first locality at six different elevations, and obtained 336 specimens distributed in 12 species. Richness and abundance, as well as relative importance peaked at the highest sites sampled (2,000 and 2,400 m). The three most abundant species showed a segregated distribution, being dominant or exclusively distributed in different altitudes. At the Serra do Tapirapecó, sampling at four different elevations up to 1200 m, we only obtained 40 individuals divided in four species, and there was no clear relation to altitude. Most of the new species were found at mid and high altitude sites, while species from lower altitude sites represented widespread species. The comparison with other neotropical spiders inventories highlights the high diversity recorded at Pico da Neblina, which could be assigned to the large environmental variation covered in this work and to the sampling of high-altitude environments. Inventories in the Andean region and other information in the literature also seem to support the association of Chrysometa with high altitude environments. Copyright © 2011

    Figure 7 in Annotated checklist of the millipede family Chelodesmidae Cook, 1895 from São Paulo state, Brazil (Diplopoda: Polydesmida)

    No full text
    Figure 7. Distribution map of the species belonging to tribes Leptodesmini, Lepturodesmini (A) and Sandalodesmini (B) from São Paulo state, Brazil.Published as part of Bouzan, Rodrigo Salvador, Iniesta, Luiz Felipe Moretti, Pena-Barbosa, João Paulo Peixoto & Brescovit, Antonio Domingos, 2018, Annotated checklist of the millipede family Chelodesmidae Cook, 1895 from São Paulo state, Brazil (Diplopoda: Polydesmida), pp. 1-19 in Papéis Avulsos de Zoologia 58 on page 10, DOI: 10.11606/1807-0205/2018.58.06, http://zenodo.org/record/461413

    Biodiversity conservation gaps in the Brazilian protected areas

    Get PDF
    Although Brazil is a megadiverse country and thus a conservation priority, no study has yet quantified conservation gaps in the Brazilian protected areas (PAs) using extensive empirical data. Here, we evaluate the degree of biodiversity protection and knowledge within all the Brazilian PAs through a gap analysis of vertebrate, arthropod and angiosperm occurrences and phylogenetic data. Our results show that the knowledge on biodiversity in most Brazilian PAs remain scant as 71% of PAs have less than 0.01 species records per km2. Almost 55% of Brazilian species and about 40% of evolutionary lineages are not found in PAs, while most species have less than 30% of their geographic distribution within PAs. Moreover, the current PA network fails to protect the majority of endemic species. Most importantly, these results are similar for all taxonomic groups analysed here. The methods and results of our countrywide assessment are suggested to help design further inventories in order to map and secure the key biodiversity of the Brazilian PAs. In addition, our study illustrates the most common biodiversity knowledge shortfalls in the tropics.Fil: Oliveira, Ubirajara. Universidade Federal de Minas Gerais; BrasilFil: Soares-Filho, Britaldo Silveira. Universidade Federal de Minas Gerais; BrasilFil: Paglia, Adriano Pereira. Universidade Federal de Minas Gerais; BrasilFil: Brescovit, Antonio Domingos. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: De Carvalho, Claudio J. B.. Universidade Federal do Paraná; BrasilFil: Silva, Dasniel Paiva. Instituto Federal Goiano; BrasilFil: Teixeira de Rezende, Daniella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Leite, Felipe Sá Fortes. Universidade Federal de Vicosa; BrasilFil: Batista, João Aguiar Nogueira. Universidade Federal de Minas Gerais; BrasilFil: Barbosa, João Paulo Peixoto Pena. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Stehmann, João Renato. Universidade Federal de Minas Gerais; BrasilFil: Ascher, John S.. National University Of Singapore; SingapurFil: De Vasconcelos, Marcelo Ferreira. Instituto Prístino; BrasilFil: De Marco, Paulo. Universidade Federal de Goiás; BrasilFil: Löwenberg-Neto, Peter. Universidade Federal da Integração Latino-Americana; BrasilFil: Ferro, Viviane Gianluppi. Universidade Federal de Goiás; BrasilFil: Santos, Adalberto J.. Universidade Federal de Minas Gerais; Brasi

    Reply to Biodiversity conservation gaps in Brazil: A role for systematic conservation planning

    No full text
    Previous article in issueNext article in issue Fonseca and Venticinque (2018) (hereafter FV) present a critical assessment of a paper in which we attempt to estimate the biodiversity coverage of the Brazilian conservation units (Oliveira et al., 2017). We appreciate their contribution to this important debate. We have no doubts that conservation planning should be based on a variety of information sources, including not only the coverage of species? ranges but also the contribution of each area to the preservation of ecosystem services, landscape features and socioeconomic and cultural aspects. This systematic and integrative conservation planning is certainly a complex process, which requires the contribution of experts from different fields. However, we have shown, in this reply, that our paper (Oliveira et al., 2017) aims to quantify the knowledge and protection gaps of biodiversity in protected areas, not to propose priority areas or to test whether the current proposal of priority areas is efficient. Objectives and the conclusions of our paper. We hope this short response can clarify this debate.Fil: Oliveira, Ubirajara. Universidade Federal de Minas Gerais; BrasilFil: Soares Filho, Britaldo Silveira. Universidade Federal de Minas Gerais; BrasilFil: Paglia, Adriano Pereira. Universidade Federal de Minas Gerais; BrasilFil: Brescovit, Antonio Domingos. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: de Carvalho, Claudio J. B.. Universidade Federal do Paraná; BrasilFil: Silva, Daniel Paiva. Instituto Federal Goiano; BrasilFil: Teixeira de Rezende, Daniella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Leite, Felipe Sá Fortes. Universidade Federal de Viçosa; BrasilFil: Batista, João Aguiar Nogueira. Universidade Federal de Minas Gerais; BrasilFil: Barbosa, João Paulo Peixoto Pena. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Stehmann, João Renato. Universidade Federal de Minas Gerais; BrasilFil: Ascher, John S.. National University Of Singapore; SingapurFil: Vasconcelos, Marcelo Ferreira de. Instituto Prístino; BrasilFil: De Marco, Paulo. Universidade Federal de Goiás; BrasilFil: Löwenberg-Neto, Peter. Universidade Federal Da Integração Latino-americana; BrasilFil: Ferro, Viviane Gianluppi. Universidade Federal de Goiás; BrasilFil: Santos, Adalberto J.. Universidade Federal de Minas Gerais; Brasi

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore