63 research outputs found

    Pressure effects on the vibrational properties of alpha-Bi2O3: an experimental and theoretical study

    Full text link
    We report an experimental and theoretical high-pressure study of the vibrational properties of synthetic monoclinic bismuth oxide (alpha-Bi2O3), also known as mineral bismite. The comparison of Raman scattering measurements and theoretical lattice-dynamics ab initio calculations is key to understanding the complex vibrational properties of bismite. On one hand, calculations help in the symmetry assignment of phonons and to discover the phonon interactions taking place in this low-symmetry compound, which shows considerable phonon anticrossings; and, on the other hand, measurements help to validate the accuracy of first-principles calculations relating to this compound. We have also studied the pressure-induced amorphization (PIA) of synthetic bismite occurring around 20 GPa and showed that it is reversible below 25 GPa. Furthermore, a partial temperature-induced recrystallization (TIR) of the amorphous sample can be observed above 20 GPa upon heating to 200 C, thus evidencing that PIA at room temperature occurs because of the inability of the a phase to undergo a phase transition to a high-pressure phase. Raman scattering measurements of the TIR sample at room temperature during pressure release have been performed. The interpretation of these results in the light of ab initio calculations of the candidate phases at high pressures has allowed us to tentatively attribute the TIR phase to the recently found high-pressure hexagonal HPC phase and to discuss its lattice dynamics.This work has been supported by Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under project 201050/2012-9, by Ministerio de Ciencia e Innovacion of Spain (MICINN) under the National Program of Materials (MAT2010-21270-C04-03/04) and the Consolider-Ingenio 2010 Program (MALTA CSD2007-0045) and by Generalitat Valenciana through projects GVA-ACOMP-2013-012 and Prometeo 2009/053.Pereira, ALJ.; Gomis, O.; Sans, JA.; Pellicer-Porres, J.; Manjón Herrera, FJ.; Beltran, A.; Rodríguez-Hernández, P.... (2014). Pressure effects on the vibrational properties of alpha-Bi2O3: an experimental and theoretical study. Journal of Physics: Condensed Matter. 26(22):225401-1-225401-15. https://doi.org/10.1088/0953-8984/26/22/225401S225401-1225401-15262

    X-ray-absorption fine-structure study of ZnSexTe1−x alloys

    Get PDF
    X-ray-absorption fine-structure experiments at different temperatures in ZnSexTe1−x (x=0, 0.1, 0.2, 0.55, 0.81, 0.93, 0.99, and 1.0) have been performed in order to obtain information about the structural relaxation and disorder effects occurring in the alloys. First and second neighbor distance distributions have been characterized at the Se and Zn K edges, using multiple-edge and multiple-scattering data analysis. The first neighbor distance distribution was found to be bimodal. The static disorder associated with the Zn–Te distance variance did not depend appreciably on composition. On the other hand, the static disorder associated with the Zn–Se distance increased as the Se content diminished. Using the bonding angle information provided by our experiments the point of view of the anion has been related to that of the cation. The resulting structural model indicates that Zn tetrahedra surrounding the anions remain essentially undistorted, but forced to tilt from their ideal zincblende orientation to accommodate the minority element. The main origin of structural disorder is [email protected] ; [email protected]

    Monazite-type SrCrO4 under compression

    Get PDF
    We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8–9 GPa. Evidence of a second phase transition was observed at 10–13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO4. A comparison of the high-pressure behavior of the electronic properties of SrCrO4 (SrWO4) and PbCrO4 (PbWO4) will also be made. Finally, the possible occurrence of a third structural phase transition is discussed

    High-pressure phase transitions and compressibility of wolframite-type tungstates

    Get PDF
    This paper reports an investigation on the phase diagram and compressibility of wolframite-type tungstates by means of x-ray powder diffraction and absorption in a diamond-anvil cell and ab initio calculations. X-ray diffraction experiments show that monoclinic wolframite-type MgWO4 suffers at least two phase transitions, the first one being to a triclinic polymorph with a structure similar to that of CuWO4 and FeMoO4-II. The onset of each transition is detected at 17.1 and 31 GPa. In ZnWO4 the onset of the monoclinic-triclinic transition has been also found at 16.7 GPa. This transition does not involve any change in the atomic coordination as confirmed by x-ray absorption measurements. These findings are supported by density-functional theory calculations, which predict the occurrence of additional transitions upon further compression. Calculations have been also performed for wolframite-type MnWO4, which is found to have an antiferromagnetic configuration. In addition, our study reveals details of the local-atomic compression in MgWO4 and ZnWO4. In particular, below the transition pressure the ZnO6 and equivalent polyhedra tend to become more regular, whereas, the WO6 octahedra remain almost unchanged. Fitting the pressure-volume data we obtained the equation of state for the low-pressure phase of MgWO4 and ZnWO4. These and previous results on MnWO4 and CdWO4 are compared with the calculations. The compressibility of wolframite-type tungstates is also systematically discussed. Finally Raman spectroscopy measurements and lattice dynamics calculations are presented for MgWO4

    Phase transition systematics in BiVO4 by means of high-pressure-high-temperature Raman experiments

    Get PDF
    "We report here high-pressure-high-temperature Raman experiments performed on BiVO4. We characterized the fergusonite and scheelite phases (powder and single crystal samples) and the zircon polymorph (nanopowder). The experimental results are supported by ab initio calculations, which, in addition, provide the vibrational patterns. The temperature and pressure behavior of the fergusonite lattice modes reflects the distortions associated with the ferroelastic instability. The linear coefficients of the zircon phase are in sharp contrast to the behavior observed in the fergusonite phase. The boundary of the fergusonite-to-scheelite second-order phase transition is given by TF-Sch (K) = -166(8)P(GPa) + 528(5). The zircon-to-scheelite, irreversible, first-order phase transition takes place at T-Z-(Sch )(K) = -107(8)P(GPa) + 690(10). We found evidence of additional structural changes around 15.7 GPa, which in the downstroke were found to be not reversible. We analyzed the anharmonic contribution to the wave-number shift in fergusonite using an order parameter. The introduction of a critical temperature depending both on temperature and pressure allows for a description of the results of all the experiments in a unified way.

    Determination of the high-pressure crystal structure of BaWO4 and PbWO4

    Full text link
    We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in BaWO4 and PbWO4 at pressures of up to 56 GPa and 24 GPa, respectively. BaWO4 is found to undergo a pressure-driven phase transition at 7.1 GPa from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in PbWO4 at 9 GPa. We observe a second transition to another monoclinic structure which we identify as that of the isostructural phases BaWO4-II and PbWO4-III (space group P21/n). We have also performed ab initio total energy calculations which support the stability of this structure at high pressures in both compounds. The theoretical calculations further find that upon increase of pressure the scheelite phases become locally unstable and transform displacively into the fergusonite structure. The fergusonite structure is however metastable and can only occur if the transition to the P21/n phases were kinetically inhibited. Our experiments in BaWO4 indicate that it becomes amorphous beyond 47 GPa.Comment: 46 pages, 11 figures, 3 table

    Phase transition systematics in BiVO4 by means of high-pressure-high-temperature Raman experiments

    Get PDF
    We report here high-pressure–high-temperature Raman experiments performed on BiVO 4 . We characterized the fergusonite and scheelite phases (powder and single crystal samples) and the zircon polymorph (nanopowder). The experimental results are supported by ab initio calculations, which, in addition, provide the vibrational patterns. The temperature and pressure behavior of the fergusonite lattice modes reflects the distortions associated with the ferroelastic instability. The linear coefficients of the zircon phase are in sharp contrast to the behavior observed in the fergusonite phase. The boundary of the fergusonite-to-scheelite second-order phase transition is given by T F − Sch ( K ) = − 166 ( 8 ) P ( GPa ) + 528 ( 5 ) . The zircon-to-scheelite, irreversible, first-order phase transition takes place at T Z − Sch ( K ) = − 107 ( 8 ) P ( GPa ) + 690 ( 10 ) . We found evidence of additional structural changes around 15.7 GPa, which in the downstroke were found to be not reversible. We analyzed the anharmonic contribution to the wave-number shift in fergusonite using an order parameter. The introduction of a critical temperature depending both on temperature and pressure allows for a description of the results of all the experiments in a unified way

    Pressure-induced phase transition and band-gap collapse in the wide-band-gap semiconductor InTaO4

    Full text link
    A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond-anvil cell with ab initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure that shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic band-gap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on infrared-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.This paper was partially supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under Grants No. MAT2013-46649-C04-01/02/03 and No. MAT2015-71070-REDC (MALTA Consolider). The XRD experiments were performed at the MSPD-BL04 beamline at ALBA Synchrotron with the collaboration of ALBA staff. We thank S. Agouram from SC-SIE at Universitat de Valencia for technical support with the transmission electron microscope measurements.Errandonea, D.; Popescu, C.; Garg, A.; Botella, P.; Martinez García, D.; Pellicer Porres, J.; Rodríguez Hernández, P.... (2016). Pressure-induced phase transition and band-gap collapse in the wide-band-gap semiconductor InTaO4. Physical review B: Condensed matter and materials physics. 93(3):035204-1-035204-12. https://doi.org/10.1103/PhysRevB.93.035204S035204-1035204-12933Niermann, D., Grams, C. P., Schalenbach, M., Becker, P., Bohatý, L., Stein, J., … Hemberger, J. (2014). Domain dynamics in the multiferroic phase ofMnWO4. Physical Review B, 89(13). doi:10.1103/physrevb.89.134412Baum, M., Leist, J., Finger, T., Schmalzl, K., Hiess, A., Regnault, L. P., … Braden, M. (2014). Kinetics of the multiferroic switching inMnWO4. Physical Review B, 89(14). doi:10.1103/physrevb.89.144406Ruiz-Fuertes, J., López-Moreno, S., López-Solano, J., Errandonea, D., Segura, A., Lacomba-Perales, R., … Tu, C. Y. (2012). Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Physical Review B, 86(12). doi:10.1103/physrevb.86.125202Ruiz-Fuertes, J., Segura, A., Rodríguez, F., Errandonea, D., & Sanz-Ortiz, M. N. (2012). Anomalous High-Pressure Jahn-Teller Behavior inCuWO4. Physical Review Letters, 108(16). doi:10.1103/physrevlett.108.166402Lacomba-Perales, R., Errandonea, D., Martinez-Garcia, D., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Polian, A. (2009). Phase transitions in wolframite-typeCdWO4at high pressure studied by Raman spectroscopy and density-functional theory. Physical Review B, 79(9). doi:10.1103/physrevb.79.094105Goel, P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2015). Inelastic neutron scattering studies of phonon spectra, and simulations of pressure-induced amorphization in tungstatesAWO4(A=Ba,Sr,Ca, andPb). Physical Review B, 91(9). doi:10.1103/physrevb.91.094304Errandonea, D. (2015). Exploring the properties of MTO4compounds using high-pressure powder x-ray diffraction. Crystal Research and Technology, 50(9-10), 729-736. doi:10.1002/crat.201500010Errandonea, D., Gracia, L., Lacomba-Perales, R., Polian, A., & Chervin, J. C. (2013). Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence. Journal of Applied Physics, 113(12), 123510. doi:10.1063/1.4798374Coelho, M. N., Freire, P. T. C., Maczka, M., Luz-Lima, C., Saraiva, G. D., Paraguassu, W., … Pizani, P. S. (2013). High-pressure Raman scattering of MgMoO4. Vibrational Spectroscopy, 68, 34-39. doi:10.1016/j.vibspec.2013.05.007Errandonea, D., Santamaria-Perez, D., Grover, V., Achary, S. N., & Tyagi, A. K. (2010). High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4. Journal of Applied Physics, 108(7), 073518. doi:10.1063/1.3493048Errandonea, D., Pellicer-Porres, J., Manjón, F. J., Segura, A., Ferrer-Roca, C., Kumar, R. S., … Aquilanti, G. (2005). High-pressure structural study of the scheelite tungstatesCaWO4andSrWO4. Physical Review B, 72(17). doi:10.1103/physrevb.72.174106Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Zhang, Y., Holzwarth, N. A. W., & Williams, R. T. (1998). Electronic band structures of the scheelite materialsCaMoO4,CaWO4,PbMoO4,andPbWO4. Physical Review B, 57(20), 12738-12750. doi:10.1103/physrevb.57.12738Annenkov, A. ., Korzhik, M. ., & Lecoq, P. (2002). Lead tungstate scintillation material. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 490(1-2), 30-50. doi:10.1016/s0168-9002(02)00916-6Nikl, M., Bohacek, P., Mihokova, E., Solovieva, N., Vedda, A., Martini, M., … Ishii, M. (2002). Enhanced efficiency of PbWO4:Mo,Nb scintillator. Journal of Applied Physics, 91(8), 5041-5044. doi:10.1063/1.1462420Brenier, A., Jia, G., & Tu, C. (2004). Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd3+ crystal. Journal of Physics: Condensed Matter, 16(49), 9103-9108. doi:10.1088/0953-8984/16/49/025Ablett, J. M., Rueff, J.-P., Shieh, S. R., Kao, C. C., & Wang, S. (2015). Possible evidence for high-pressure induced charge transfer in thallium rhenium oxide at room temperature. Physical Review B, 92(1). doi:10.1103/physrevb.92.014113Feng, J., Shian, S., Xiao, B., & Clarke, D. R. (2014). First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Physical Review B, 90(9). doi:10.1103/physrevb.90.094102Malingowski, A. C., Stephens, P. W., Huq, A., Huang, Q., Khalid, S., & Khalifah, P. G. (2012). Substitutional Mechanism of Ni into the Wide-Band-Gap Semiconductor InTaO4and Its Implications for Water Splitting Activity in the Wolframite Structure Type. Inorganic Chemistry, 51(11), 6096-6103. doi:10.1021/ic202715cZou, Z., Ye, J., Sayama, K., & Arakawa, H. (2001). Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414(6864), 625-627. doi:10.1038/414625aLiebertz, J. (1972). Gitterkonstanten von InNbO4 und InTaO4. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 3100-3100. doi:10.1107/s0567740872007502Ruiz-Fuertes, J., López-Moreno, S., Errandonea, D., Pellicer-Porres, J., Lacomba-Perales, R., Segura, A., … González, J. (2010). High-pressure phase transitions and compressibility of wolframite-type tungstates. Journal of Applied Physics, 107(8), 083506. doi:10.1063/1.3380848Keeling, R. O. (1957). The structure of NiWO4. Acta Crystallographica, 10(3), 209-213. doi:10.1107/s0365110x57000651Li, G.-L., & Yin, Z. (2011). Theoretical insight into the electronic, optical and photocatalytic properties of InMO4(M = V, Nb, Ta) photocatalysts. Phys. Chem. Chem. Phys., 13(7), 2824-2833. doi:10.1039/b921143hYe, J., Zou, Z., Arakawa, H., Oshikiri, M., Shimoda, M., Matsushita, A., & Shishido, T. (2002). Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+). Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 79-83. doi:10.1016/s1010-6030(02)00074-6Zou, Z., Ye, J., & Arakawa, H. (2000). Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chemical Physics Letters, 332(3-4), 271-277. doi:10.1016/s0009-2614(00)01265-3Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Errandonea, D., Achary, S. N., Pellicer-Porres, J., & Tyagi, A. K. (2013). Pressure-Induced Transformations in PrVO4 and SmVO4 and Isolation of High-Pressure Metastable Phases. Inorganic Chemistry, 52(9), 5464-5469. doi:10.1021/ic400376gErrandonea, D. (2010). The melting curve of ten metals up to 12 GPa and 1600 K. Journal of Applied Physics, 108(3), 033517. doi:10.1063/1.3468149Lacomba-Perales, R., Errandonea, D., Segura, A., Ruiz-Fuertes, J., Rodríguez-Hernández, P., Radescu, S., … Muñoz, A. (2011). A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds. Journal of Applied Physics, 110(4), 043703. doi:10.1063/1.3622322Panchal, V., Errandonea, D., Segura, A., Rodríguez-Hernandez, P., Muñoz, A., Lopez-Moreno, S., & Bettinelli, M. (2011). The electronic structure of zircon-type orthovanadates: Effects of high-pressure and cation substitution. Journal of Applied Physics, 110(4), 043723. doi:10.1063/1.3626060Errandonea, D., Martínez-García, D., Lacomba-Perales, R., Ruiz-Fuertes, J., & Segura, A. (2006). Effects of high pressure on the optical absorption spectrum of scintillating PbWO4 crystals. Applied Physics Letters, 89(9), 091913. doi:10.1063/1.2345228Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121Harneit, O., & Müller-Buschbaum, H. (1993). InTaO4 und GaTaO4 mit geordneter und ungeordneter Metallverteilung. Journal of Alloys and Compounds, 194(1), 101-103. doi:10.1016/0925-8388(93)90652-4Errandonea, D., Gomis, O., García-Domene, B., Pellicer-Porres, J., Katari, V., Achary, S. N., … Popescu, C. (2013). New Polymorph of InVO4: A High-Pressure Structure with Six-Coordinated Vanadium. Inorganic Chemistry, 52(21), 12790-12798. doi:10.1021/ic402043xBirch, F. (1952). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57(2), 227-286. doi:10.1029/jz057i002p00227Angel, R. J., Alvaro, M., & Gonzalez-Platas, J. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2013-1711Errandonea, D., Ferrer-Roca, C., Martínez-Garcia, D., Segura, A., Gomis, O., Muñoz, A., … Sapiña, F. (2010). High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides. Physical Review B, 82(17). doi:10.1103/physrevb.82.174105Ruiz-Fuertes, J., Errandonea, D., Gomis, O., Friedrich, A., & Manjón, F. J. (2014). Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa. Journal of Applied Physics, 115(4), 043510. doi:10.1063/1.4863236Errandonea, D., Manjón, F. J., Muñoz, A., Rodríguez-Hernández, P., Panchal, V., Achary, S. N., & Tyagi, A. K. (2013). High-pressure polymorphs of TbVO4: A Raman and ab initio study. Journal of Alloys and Compounds, 577, 327-335. doi:10.1016/j.jallcom.2013.06.008Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Proctor, J. E., Sapiña, F., & Bettinelli, M. (2015). Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4. Inorganic Chemistry, 54(15), 7524-7535. doi:10.1021/acs.inorgchem.5b01135Itoh, M., Yokota, H., Horimoto, M., Fujita, M., & Usuki, Y. (2002). Urbach Rule in PbWO4. physica status solidi (b), 231(2), 595-600. doi:10.1002/1521-3951(200206)231:23.0.co;2-wTauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3(1), 37-46. doi:10.1016/0025-5408(68)90023-8Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560Ruiz-Fuertes, J., Errandonea, D., López-Moreno, S., González, J., Gomis, O., Vilaplana, R., … Nagornaya, L. L. (2011). High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Physical Review B, 83(21). doi:10.1103/physrevb.83.214112Errandonea, D., Manjón, F. J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Tu, C. Y. (2008). Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4. Physical Review B, 78(5). doi:10.1103/physrevb.78.054116Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411Errandonea, D., Pellicer-Porres, J., Pujol, M. C., Carvajal, J. J., & Aguiló, M. (2015). Room-temperature vibrational properties of potassium gadolinium double tungstate under compression up to 32GPa. Journal of Alloys and Compounds, 638, 14-20. doi:10.1016/j.jallcom.2015.03.02
    corecore