53 research outputs found

    Immune profiling of Alzheimer patients

    Get PDF
    Alzheimer's disease (AD) is characterized by extracellular senile plaques in the brain, containing amyloid-β peptide (Aβ). We identify immunological differences between AD patients and age-matched controls greater than those related to age itself. The biggest differences were in the CD4+ rather than the CD8+ T cell compartment resulting in lower proportions of naïve cells, more late-differentiated cells and higher percentages of activated CD4+CD25+ T cells without a Treg phenotype in AD patients. Changes to CD4+ cells might be the result of chronic stimulation by Aβ present in the blood. These findings have implications for diagnosis and understanding the aetiology of the diseas

    Growing old with antiretroviral therapy or elderly people in antiretroviral therapy: two different profiles of comorbidity?

    Get PDF
    Background: In persons living with HIV (PLWH), the burden of non-communicable chronic diseases increased over time, because of aging associated with chronic inflammation, systemic immune activation, and long-term exposure to the combination antiretroviral therapy (ART). Methods: To explore the association of chronological age, age at first ART, and exposure to ART with non-communicable chronic diseases, we performed a cross-sectional analysis to evaluate the prevalence of comorbidities in patients enrolled in the SCOLTA Project, stratified by groups of chronological age (50–59 and 60–69 years) and by years of antiretroviral treatment (ART, ≤ 3 or > 3 years). Results: In 1394 subjects (23.8% women), mean age at enrollment was 57.4 (SD 6.5) years, and at first ART 45.3 (SD 10.7). Men were older than women both at enrollment (57.6 vs 56.8, p = 0.06) and at first ART (45.8 vs 43.6, p = 0.0009). ART duration was longer in women (13.1 vs 11.7 years, p = 0.01). The age- and sex-adjusted rate ratios (aRRs, and 95% confidence interval, CI) showed that longer ART exposure was associated with dyslipidemia (aRR 1.35, 95% CI 1.20– 1.52), hypertension (aRR 1.52, 95% CI 1.22–1.89), liver disease (aRR 1.78, 95% CI 1.32–2.41), osteopenia/osteoporosis (aRR 2.88, 95% CI 1.65–5.03) and multimorbidity (aRR 1.36, 95% CI 1.21–1.54). These findings were confirmed in strata of age, adjusting for sex. Conclusions: Our data suggest that longer ART exposure was associated with increased risk of dyslipidemia, hypertension, and osteopenia/osteoporosis, hence the presence of multimorbidity, possibly due to the exposition to more toxic antiretrovirals. We observed different comorbidities, according to ART exposure and age

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Evaluation of Defects in Multilayer Carbon Fibre Epoxy for Aeronautics Applications

    Get PDF
    Production of carbon fibre reinforced polymers is an elaborate process unfree from faults and problems. Problems during the manufacturing, such as plies' overlapping, can cause flaws in the resulting material, so compromising its integrity. Compared with metallic materials, carbon epoxy composites show a number of advantages. Within this framework, ultrasonic tests are effective to identify the presence of defects. In this paper a Finite Element Method approach is proposed for evaluating the most effective incidence angle of an ultrasonic probe with regard to defects' identification. According to our goal, the analysis has been carried out considering a single-line plane emitting source varying the probe angle of inclination. The proposed model looks promising to specially emphasize the presence of delaminations as well as massive breaking in a specimen of multilayer carbon fibre epoxy. Subsequently, simulation parameters and results have been exploited and compared, respectively, for a preliminary experimental in-lab campaign of measurements with encouraging results
    corecore