62 research outputs found
Thermal history modeling of the H chondrite parent body
The cooling histories of individual meteorites can be empirically
reconstructed by using ages from different radioisotopic chronometers with
distinct closure temperatures. For a group of meteorites derived from a single
parent body such data permit the reconstruction of the cooling history and
properties of that body. Particularly suited are H chondrites because precise
radiometric ages over a wide range of closure temperatures are available. A
thermal evolution model for the H chondrite parent body is constructed by using
all H chondrites for which at least three different radiometric ages are
available. Several key parameters determining the thermal evolution of the H
chondrite parent body and the unknown burial depths of the H chondrites are
varied until an optimal fit is obtained. The fit is performed by an 'evolution
algorithm'. Empirical data for eight samples are used for which radiometric
ages are available for at least three different closure temperatures. A set of
parameters for the H chondrite parent body is found that yields excellent
agreement (within error bounds) between the thermal evolution model and
empirical data of six of the examined eight chondrites. The new thermal model
constrains the radius and formation time of the H chondrite parent body
(possibly (6) Hebe), the initial burial depths of the individual H chondrites,
the average surface temperature of the body, the average initial porosity of
the material the body accreted from, and the initial 60Fe content of the H
chondrite parent body.Comment: 16 pages, 7 figure
Computer-based technology and student engagement: a critical review of the literature
Computer-based technology has infiltrated many aspects of life and industry, yet there is little understanding of how it can be used to promote student engagement, a concept receiving strong attention in higher education due to its association with a number of positive academic outcomes. The purpose of this article is to present a critical review of the literature from the past 5 years related to how web-conferencing software, blogs, wikis, social networking sites (Facebook and Twitter), and digital games influence student engagement. We prefaced the findings with a substantive overview of student engagement definitions and indicators, which revealed three types of engagement (behavioral, emotional, and cognitive) that informed how we classified articles. Our findings suggest that digital games provide the most far-reaching influence across different types of student engagement, followed by web-conferencing and Facebook. Findings regarding wikis, blogs, and Twitter are less conclusive and significantly limited in number of studies conducted within the past 5 years. Overall, the findings provide preliminary support that computer-based technology influences student engagement, however, additional research is needed to confirm and build on these findings. We conclude the article by providing a list of recommendations for practice, with the intent of increasing understanding of how computer-based technology may be purposefully implemented to achieve the greatest gains in student engagement. Ă© 2017, The Author(s)
- âŠ