37 research outputs found

    Topography Effects in the Athens 1999 Earthquake: The Case of Hotel Dekelia

    Get PDF
    The effects of surface topography on the seismic ground response of the site of Hotel DEKELIA, which partially collapsed in the Athens 1999 earthquake, is studied by the finite element method. The hotel site is located at the crest of a 40m high bank of a stream crossing the area. 2-D and I-D analyses of seismic ground response were conducted using five accelerograms recorded in past earthquakes (including the Athens 1999 earthquake) as input motion. Geotechnical data for the site were obtained from the results of a geotechnical investigation conducted at the hotel site whereas a VSO vs. depth profile was estimated by using the SASW method. The ground response analyses were conducted by assuming both equivalent-linear and truly non-linear soil behavior. The results indicate that surface topography has the potential of amplifying the peak horizontal accelerations and the maximum spectral accelerations (for period values ranging from 0.35sec to 0.50 sec) at the hotel site by up to 35% and loo%, respectively. It was also found that the local soil conditions at the site may have amplified significantly the input motion. It is concluded that the combined effects of surface topography and local soil conditions may have contributed to the partial collapse of the hotel

    Engineering reconnaissance following the August 24, 2016 M6.0 Central Italy earthquake

    Get PDF
    An earthquake with a moment magnitude reported as 6.0 from INGV (Istituto Nazionale di Geofisica e Vulcanologia); occurred at 03:36 AM (local time) on 24 August 2016 in the central part of Italy. The epicenter was located at the borders of the Lazio, Abruzzi, Marche and Umbria regions, about 2.5 km north-east of the village of Accumoli and about 100 km from Rome. The hypocentral depth was about 8 km (INGV). We summarize preliminary findings of the Italy-US GEER (Geotechnical Extreme Events Reconnaissance) team, on damage distribution, causative faults, earthquake-induced landslides and rockfalls, building and bridge performance, and ground motion characterization. Our reconnaissance team used multidisciplinary approaches, combining expertise in geology, seismology, geomatics, geotechnical engineering, and structural engineering. Our approach was to combine traditional reconnaissance activities of on-ground recording and mapping of field conditions, with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. We anticipate that results from this study, will be useful for future post-earthquake reconnaissance efforts, and improved emergency respons

    Engineering Reconnaissance Following the October 2016 Central Italy Earthquakes - Version 2

    Get PDF
    Between August and November 2016, three major earthquake events occurred in Central Italy. The first event, with M6.1, took place on 24 August 2016, the second (M5.9) on 26 October, and the third (M6.5) on 30 October 2016. Each event was followed by numerous aftershocks. As shown in Figure 1.1, this earthquake sequence occurred in a gap between two earlier damaging events, the 1997 M6.1 Umbria-Marche earthquake to the north-west and the 2009 M6.1 L’Aquila earthquake to the south-east. This gap had been previously recognized as a zone of elevated risk (GdL INGV sul terremoto di Amatrice, 2016). These events occurred along the spine of the Apennine Mountain range on normal faults and had rake angles ranging from -80 to -100 deg, which corresponds to normal faulting. Each of these events produced substantial damage to local towns and villages. The 24 August event caused massive damages to the following villages: Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. In total, there were 299 fatalities (www.ilgiornale.it), generally from collapses of unreinforced masonry dwellings. The October events caused significant new damage in the villages of Visso, Ussita, and Norcia, although they did not produce fatalities, since the area had largely been evacuated. The NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-funding from the B. John Garrick Institute for the Risk Sciences at UCLA and the NSF I/UCRC Center for Unmanned Aircraft Systems (C-UAS) at BYU, mobilized a US-based team to the area in two main phases: (1) following the 24 August event, from early September to early October 2016, and (2) following the October events, between the end of November and the beginning of December 2016. The US team worked in close collaboration with Italian researchers organized under the auspices of the Italian Geotechnical Society, the Italian Center for Seismic Microzonation and its Applications, the Consortium ReLUIS, Centre of Competence of Department of Civil Protection and the DIsaster RECovery Team of Politecnico di Torino. The objective of the Italy-US GEER team was to collect and document perishable data that is essential to advance knowledge of earthquake effects, which ultimately leads to improved procedures for characterization and mitigation of seismic risk. The Italy-US GEER team was multi-disciplinary, with expertise in geology, seismology, geomatics, geotechnical engineering, and structural engineering. The composition of the team was largely the same for the two mobilizations, particularly on the Italian side. Our approach was to combine traditional reconnaissance activities of on-ground recording and mapping of field conditions, with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. GEER coordinated its reconnaissance activities with those of the Earthquake Engineering Research Institute (EERI), although the EERI mobilization to the October events was delayed and remains pending as of this writing (April 2017). For the August event reconnaissance, EERI focused on emergency response and recovery, in combination with documenting the effectiveness of public policies related to seismic retrofit. As such, GEER had responsibility for documenting structural damage patterns in addition to geotechnical effects. This report is focused on the reconnaissance activities performed following the October 2016 events. More information about the GEER reconnaissance activities and main findings following the 24 August 2016 event, can be found in GEER (2016). The objective of this document is to provide a summary of our findings, with an emphasis of documentation of data. In general, we do not seek to interpret data, but rather to present it as thoroughly as practical. Moreover, we minimize the presentation of background information already given in GEER (2016), so that the focus is on the effects of the October events. As such, this report and GEER (2016) are inseparable companion documents. Similar to reconnaissance activities following the 24 August 2016 event, the GEER team investigated earthquake effects on slopes, villages, and major infrastructure. Figure 1.2 shows the most strongly affected region and locations described subsequently pertaining to: 1. Surface fault rupture; 2. Recorded ground motions; 3. Landslides and rockfalls; 4. Mud volcanoes; 5. Investigated bridge structures; 6. Villages and hamlets for which mapping of building performance was performed

    Reconnaissance of 2016 Central Italy Earthquake Sequence

    Get PDF
    The Central Italy earthquake sequence nominally began on 24 August 2016 with a M6.1 event on a normal fault that produced devastating effects in the town of Amatrice and several nearby villages and hamlets. A major international response was undertaken to record the effects of this disaster, including surface faulting, ground motions, landslides, and damage patterns to structures. This work targeted the development of high-value case histories useful to future research. Subsequent events in October 2016 exacerbated the damage in previously affected areas and caused damage to new areas in the north, particularly the relatively large town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 documented and mapped several large landslide features and increased damage states for structures in villages and hamlets throughout the region. This paper provides an overview of the reconnaissance activities undertaken to document and map these and other effects, and highlights valuable lessons learned regarding faulting and ground motions, engineering effects, and emergency response to this disaster

    Strong ground motion characteristics from 2016 central Italy earthquake sequence

    No full text
    The Central Italy earthquake sequence has, to date, generated three mainshocks: M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016. These events, along with aftershocks, were well recorded by Italian networks, and are among the normal fault earthquakes with the highest number of recordings globally. We process records for six events using procedures developed during the latest Next Generation Attenuation (NGA-West2) project, coordinated by the Pacific Earthquake Engineering Research Center (PEER). Many recording sites lacked VS30 assignments, which we provide using measured shear wave velocity profiles where available and a local geology proxy otherwise. Stations at close distance, including near the hanging wall, exhibit fling step in some cases but no obvious rupture directivity. The data exhibit fast anelastic attenuation at large distances (>100 km), as predicted by recent Italy-adjusted global models, but not by Italy-specific models. We partition residuals from Italy-adjusted global models, finding negative event terms at short periods (weaker than average shaking). We apply Kriging of within-event peak acceleration and velocity residuals using a global semi-variogram model to estimate the spatial distribution of peak accelerations and velocities, which are generally most intense southwest of Mt. Vettore
    corecore