11 research outputs found

    Comparison of smoothing filters in analysis of EEG data for the medical diagnostics purposes

    Get PDF
    This paper covers a brief review of both the advantages and disadvantages of the implementation of various smoothing filters in the analysis of electroencephalography (EEG) data for the purpose of potential medical diagnostics. The EEG data are very prone to the occurrence of various internal and external artifacts and signal distortions. In this paper, three types of smoothing filters were compared: smooth filter, median filter and Savitzky-Golay filter. The authors of this paper compared those filters and proved their usefulness, as they made the analyzed data more legible for diagnostic purposes. The obtained results were promising, however, the studies on finding perfect filtering methods are still in progress.Web of Science203art. no. 80

    Testate Amoebae Examined by Confocal and Two-Photon Microscopy: Implications for Taxonomy and Ecophysiology

    Get PDF
    Testate amoebae (TA) are a group of free-living protozoa, important in ecology and paleoecology. Testate amoebae taxonomy is mainly based on the morphological features of the shell, as examined by means of light microscopy or (environmental) scanning electron microscopy (SEM/ESEM). We explored the potential applications of confocal laser scanning microscopy (CLSM), two photon excitation microscopy (TPEM), phase contrast, differential interference contrast (DIC Nomarski), and polarization microscopy to visualize TA shells and inner structures of living cells, which is not possible by SEM or environmental SEM. Images captured by CLSM and TPEM were utilized to create three-dimensional (3D) visualizations and to evaluate biovolume inside the shell by stereological methods, to assess the function of TA in ecosystems. This approach broadens the understanding of TA cell and shell morphology, and inner structures including organelles and endosymbionts, with potential implications in taxonomy and ecophysiolog

    Information channels and signal sources

    No full text
    This work deals with topical questions of information channels and signal sources. In my case the beginning of this work is focused on the principle of creating RSS channels and records in format Atom and RSS. I skatch in the basic frame, optional and obligatory and optional elements of Atom and RSS. In the next section I compare and evaluate separate readers (Flock, Google Reader) and integrated reader for Browsers (Firefox Live Bookmarks, MS Outlook) according to predetermined standards, that I have set. In this work is included the questionnaire research, in which is probed, whether is expanded a given RSS technology, who uses it, and which readers and equipments are used for receiving news. Further in this work I describe the technology of audio and TV channels (podcasting, media RSS and RSS TV). The conclusion of the work is created by practical part, where the demonstration illustration of a information channel for select elementary school is inserted

    Implementation of a Morphological Filter for Removing Spikes from the Epileptic Brain Signals to Improve Identification Ripples

    No full text
    Epilepsy is a very common disease affecting at least 1% of the population, comprising a number of over 50 million people. As many patients suffer from the drug-resistant version, the number of potential treatment methods is very small. However, since not only the treatment of epilepsy, but also its proper diagnosis or observation of brain signals from recordings are important research areas, in this paper, we address this very problem by developing a reliable technique for removing spikes and sharp transients from the baseline of the brain signal using a morphological filter. This allows much more precise identification of the so-called epileptic zone, which can then be resected, which is one of the methods of epilepsy treatment. We used eight patients with 5 KHz data set and depended upon the Staba 2002 algorithm as a reference to detect the ripples. We found that the average sensitivity and false detection rate of our technique are significant, and they are ∼94% and ∼14%, respectively

    Comparison of smoothing filters' influence on quality of data recorded with the Emotiv EPOC Flex brain-computer interface headset during audio stimulation

    No full text
    Off-the-shelf, consumer-grade EEG equipment is nowadays becoming the first-choice equipment for many scientists when it comes to recording brain waves for research purposes. On one hand, this is perfectly understandable due to its availability and relatively low cost (especially in comparison to some clinical-level EEG devices), but, on the other hand, quality of the recorded signals is gradually increasing and reaching levels that were offered just a few years ago by much more expensive devices used in medicine for diagnostic purposes. In many cases, a well-designed filter and/or a well-thought signal acquisition method improve the signal quality to the level that it becomes good enough to become subject of further analysis allowing to formulate some valid scientific theories and draw far-fetched conclusions related to human brain operation. In this paper, we propose a smoothing filter based upon the Savitzky-Golay filter for the purpose of EEG signal filtering. Additionally, we provide a summary and comparison of the applied filter to some other approaches to EEG data filtering. All the analyzed signals were acquired from subjects performing visually involving high-concentration tasks with audio stimuli using Emotiv EPOC Flex equipment.Web of Science111art. no. 9

    Initial study on quantitative electroencephalographic analysis of bioelectrical activity of the brain of children with fetal alcohol spectrum disorders (FASD) without epilepsy

    No full text
    Fetal alcohol spectrum disorders (FASD) are spectrum of neurodevelopmental conditions associated with prenatal alcohol exposure. The FASD manifests mostly with facial dysmorphism, prenatal and postnatal growth retardation, and selected birth defects (including central nervous system defects). Unrecognized and untreated FASD leads to severe disability in adulthood. The diagnosis of FASD is based on clinical criteria and neither biomarkers nor imaging tests can be used in order to confirm the diagnosis. The quantitative electroencephalography (QEEG) is a type of EEG analysis, which involves the use of mathematical algorithms, and which has brought new possibilities of EEG signal evaluation, among the other things—the analysis of a specific frequency band. The main objective of this study was to identify characteristic patterns in QEEG among individuals affected with FASD. This study was of a pilot prospective study character with experimental group consisting of patients with newly diagnosed FASD and of the control group consisting of children with gastroenterological issues. The EEG recordings of both groups were obtained, than analyzed using a commercial QEEG module. As a results we were able to establish the dominance of the alpha rhythm over the beta rhythm in FASD-participants compared to those from the control group, mostly in frontal and temporal regions. Second important finding is an increased theta/beta ratio among patients with FASD. These findings are consistent with the current knowledge on the pathological processes resulting from the prenatal alcohol exposure. The obtained results and conclusions were promising, however, further research is necessary (and planned) in order to validate the use of QEEG tools in FASD diagnostics

    Initial study on an expert system for spine diseases screening using inertial measurement unit

    Get PDF
    In recent times, widely understood spine diseases have advanced to one of the most urgetn problems where quick diagnosis and treatment are needed. To diagnose its specifcs (e.g. to decide whether this is a scoliosis or sagittal imbalance) and assess its extend, various kind of imaging diagnostic methods (such as X-Ray, CT, MRI scan or ST) are used. However, despite their common use, some may be regarded as (to a level) invasive methods and there are cases where there are contraindications to using them. Besides, which is even more of a problem, these are very expensive methods and whilst their use for pure diagnostic purposes is absolutely valid, then due to their cost, they cannot rather be considered as tools which would be equally valid for bad posture screening programs purposes. This paper provides an initial evaluation of the alternative approach to the spine diseases diagnostic/ screening using inertial measurement unit and we propose policy-based computing as the core for the inference systems. Although the methodology presented herein is potentially applicable to a variety of spine diseases, in the nearest future we will focus specifcally on sagittal imbalance detection.Web of Science131art. no. 1044
    corecore