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Abstract: Testate amoebae (TA) are a group of free-living protozoa, important in ecology and paleoecology.
Testate amoebae taxonomy is mainly based on the morphological features of the shell, as examined by means of
light microscopy or (environmental) scanning electron microscopy (SEM/ESEM). We explored the potential
applications of confocal laser scanning microscopy (CLSM), two photon excitation microscopy (TPEM), phase
contrast, differential interference contrast (DIC Nomarski), and polarization microscopy to visualize TA shells
and inner structures of living cells, which is not possible by SEM or environmental SEM. Images captured by
CLSM and TPEM were utilized to create three-dimensional (3D) visualizations and to evaluate biovolume
inside the shell by stereological methods, to assess the function of TA in ecosystems. This approach broadens the
understanding of TA cell and shell morphology, and inner structures including organelles and endosymbionts,

with potential implications in taxonomy and ecophysiology.
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INTRODUCTION

Testate amoebae (TA) belong to a polyphyletic group of
unicellular eucaryotes (ca. 10-400 pm) protected by a shell
(test). The shell enclosing the cell plasma usually has a
single aperture (operculum) for the pseudopodia, rarely two
apertures. A proteinaceous organic matrix is the basic shell
component (Meisterfeld, 2002a, 2002b). There are four
main shell types: proteinaceous only, calcareous, siliceous
(species secreting their own regular siliceous shell plates,
so-called idiosomes), and agglutinated (species incorporat-
ing extraneous mineral particles, so-called xenosomes, into
their shells) (Wanner, 1999). Despite the presence of an
opaque shell, some testate amoeba species have photosyn-
thetic endosymbionts and are thus mixotrophic (Meister-
feld, 2002a, 2002b).
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Testate amoebae are commonly used as model organ-
isms in population ecology, ecotoxicology, ecology,
paleoecology, and evolutionary biology. They are useful
bioindicators of natural ecological gradients, environmental
stress, or pollution in both aquatic and terrestrial ecosys-
tems (Patterson et al., 1996, 2002; Foissner, 1997, 1999;
Booth, 2002; Mitchell et al., 20084, 2008b). In most aquatic
and terrestrial ecosystems, TA also play an important role in
the cycling of nutrients, especially C, N, and Si (Schénborn,
1983, 1992; Schroter et al., 2003; Aoki et al., 2007; Wilkin-
son, 2008; Vohnik et al., 2009).

A prerequisite for the use of TA in ecological and
paleoecological studies is a sound taxonomy. TA taxonomy
is mainly based on the shell structure (Ogden & Hedley,
1980). Indeed, in a number of taxa the cytoplasm, the nuclei
and types of pseudopodia have not been observed yet
(Meisterfeld, 2002a, 2002b). Recent studies combining mor-
phological and molecular data have revealed an unexpected
diversity among the testate amoebae, thus illustrating their
role as a model group to study evolutionary processes such

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:32:45, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/51431927610094031


https://core.ac.uk/display/85213939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1431927610094031
https:/www.cambridge.org/core

736  Zuzana Burdikovi et al.

as marine-terrestrial transitions. Subtle morphological fea-
tures that are typically invisible under light microscopy
were shown be of taxonomical significance (Todorov et al.,
2009; Heger et al., 2010).

Ecological studies aiming to establish the contribution
of TA to biomass or nutrient cycling require a reliable
estimate of cell volume (e.g., Gilbert et al., 1998; Mitchell
et al., 2003; Schroter et al., 2003). The volume of biomass
inside the shells can be calculated by applying an appropri-
ate conversion factor (Madrid & Felice, 2005) or by assum-
ing that the TA shells can be approximated by simple
geometrical shapes (Gilbert et al.,, 1998). The accuracy of
these approaches is limited (Charriere et al., 2006).

There has been a growing demand to revise the taxon-
omy of testate amoebae and to develop new optical methods
for their reliable identification (Mitchell & Gilbert, 2010).
Apart from scanning electron microscopy (SEM) as the most
common technique, the ideal imaging setup should distin-
guish the relevant morphological features without requiring
an excessively complex preparation and handling. To some
extent, the optical contrasting modalities such as phase con-
trast, differential interference contrast (DIC) (Murphy, 2001)
or digital holographic microscopy, a modern adaptation of
interference microscopy (Charriére et al., 2006) can be uti-
lized, as demonstrated in TA (Beyens & Meisterfeld, 2001;
Charriére et al., 2006). If biovolume estimations and/or three-
dimensional (3D) reconstructions are required confocal or
two-photon microscopy represent a convenient solution.

The aim of the present study is to explore the potential
of confocal laser scanning microscopy (CLSM) and two-
photon excitation microscopy (TPEM) together with 3D
reconstructions and stereological measurements for the study
of testate amoebae morphology.

MATERIALS AND METHODS

Specimens

Samples of TA were collected from four pools of Komotany
ponds near Vltava river, 1-2 m from the river, in Prague,
Czech Republic. TA from Komotany pools were studied with-
out fixation and stored in their natural environment (water)
for not more than 4 h before image acquisition. Samples from
the Alps and Jura Mountains (Switzerland) and from Sphag-
num moss areas of the Sumava Mountains (Czech Republic)
were studied both before and after a paraformaldehyde fixa-
tion. A list of all examined species is shown in Table 1.

The fixation was performed by a gentle centrifugation
followed by replacing the resulting supernatant by 4% para-
formaldehyde (45 min at room temperature). After fixation
the specimen was centrifuged again and supernatant re-
placed by filtered water (0.2 wm mesh) obtained from the
place of sampling.

For DAPI, Hoechst 34580, propidium iodide, and Alexa-
Fluor 633 phalloidin staining, the TA were fixed and treated

with 0.1% Triton X-100 (5 min at room temperature) to per-
meabilize the plasma membrane. The samples were then cen-
trifuged, Triton X-100 aspired, and the samples suspended in
water. Triton X-100 was not used when identifying dead/
living cells by propidium iodide staining (Table 1, Fig. 3h).

The TA samples were stained as specified in Table 2,
centrifuged in Eppendorf tubes (12,100 rpm for 45 s, RCF
ca. 9,000 g), supernatant removed and replaced with filtered
water (0.2 wm mesh) from the place of sampling. The
centrifugation was performed three times to remove any
excessive probe. Afterwards, the TA suspension in water was
mounted between a microscope slide and a cover slip sealed
together with nail varnish.

Optical Contrasting

All images shown in Figure 1 were acquired with an Olym-
pus DP70 digital camera fitted to an Olympus BX60 upright
microscope equipped with U-UCDS8 universal condenser
(NA 0.90 in a dry “TLD” mode).

Conventional phase contrast with no special modifica-
tions was employed. Polarization microscopy was per-
formed in a simple way, with the specimen placed between
crossed or nearly crossed polarizers. Differential interfer-
ence contrast (DIC Nomarski) images were optimized by
adjusting the position of the Wollaston prism in a DIC
slider (U-DICT type), thus setting an optimal bias retarda-
tion, depending on the optical thickness of the object (testate
amoeba). Two objective lenses were used: UPlanFl 40x/0.75
Ph2 (Fig. 1b) and UPlanFl 20x/0.50 (all other images).

Except for Figures 1f,h, all images shown in Figure 1 are
processed ones obtained from raw images acquired at a
series of focal planes, by employing a DeepFocus module of
QuickPHOTO Micro software.

Scanning and Environmental Scanning
Electron Microscopy

A scanning electron microscope FEI Quanta 200 was used
as described in (Michels & Schnack-Schiel, 2005), either in
SEM or environmental SEM (ESEM) mode.

For the SEM (high-vacuum) mode, the fixed shells were
critical point dried or partially dried, mounted on metal
stubs with a double-sided adhesive conductive (carbon)
tape and coated with gold (4 min at 20 mA in a vacuum of
about 10 Pa, with argon present) using a sputter coater. The
stubs were then affixed by the carbon tape to a microscope
stage. The gold-coated TA shells were examined at 20-30 kV
in a high vacuum mode, using an Everhart-Thornley second-
ary electron detector.

For the ESEM mode, the fixed shells were washed in
distilled water to remove the fixatives, partially dried, and
placed on a Peltier-cooled stage (JT Manufacturing, Hud-
son, NH, USA). To prevent the stub from drifting, it was
previously covered with the same double-sided adhesive
conductive (carbon) tape as used in SEM. The TA shells
were observed at 20-30 kV, 200-400 Pa, and sample temper-
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Table 1. A List of Observed Testate Amoebae Species and Tested Fluorescent Probes.)
Number of
All/Living Cells
(P and B Probes
Species Probe/Number of Examined TA Combined)
Arcella vulgaris Ehrenberg A/3, B/2, C/3, D/1, M/2, P/5, TR/2 55/7
Arcella discoides Ehrenberg
Archerella flavum (Archer) A/3
Assulina muscorum Greeff A/10, B/10, D/10, DI/10, F/10, PH/10, S/1
Assulina seminulum Penard
Centropyxis aculeata (Ehrenberg) Stein A/5, AB/3, B/45, D/7, P/6, T/5, TR/8 66/18
Centropyxis aerophila Deflandre
Centropyxis constricta (Ehrenberg) Penard
Corythion dubium Taranek B/1
Cyclopyxis eurystoma Deflandre B/4, T/7
Cyclopyxis kahli Deflandre
Cyphoderia ampulla Ehrenberg 1/1
Difflugia oblonga Ehrenberg B/3, D/4, H/3, P/3, T/8 21/4
Euglypha ciliata Ehrenberg B/5, C/3, D/2, E/5, H/2, L/5, M/10, P/6, S/1, T/3 31/10
Euglypha compressa Carter
Euglypha strigosa Ehrenberg
Hyalosphenia papilio Leidy A/10, B/10, D/10, DI/10, F/10, PH/10, S/3, T/4
Nebela bohemica Taranek A/10, B/10, C/3, D/10, DI/10, F/10, PH/10
Nebela tincta Leidy
Tracheleuglypha dentata Penard A/3, B/5, D/4, P/3, T/6 21/5
Trinema complanatum Penard A/10, B/28, D/11, H/3, P/6, T/20, TR/6 68/8

Trinema enchelys Ehrenberg
Trinema lineare Penard

Trigonopyxis arcula Penard AB/4

“'The following notation was used: A (Acid Fuchsin), AB (Aniline Blue), B (BCECF-AM), C (CellTracker Green CMFDA), D (DAPI), DI
(DiOC5(3)), E (Er-Tracker Blue-White DPX), F (FITC), H (Hoechst 34580), L (LysoTracker Red DND-99), M (MitoTracker Deep Red
FM), P (propidium iodide), PH (AlexaFluor 633 phalloidin), S (SYTO 16), T (TMRE), TR (Texas Red C,-maleimide). The third column
indicates the number of all individuals in a combined propidium iodide and BCECF-AM staining experiment (before slash) and the

number of individuals identified as alive by this method (after slash).

ature of —14°C to —4°C. Alternatively, the pressure was
raised up to 1 kPa with no cooling applied. A gaseous
secondary electron detector was used.

Confocal Laser Scanning Microscopy

Two confocal laser scanning microscope systems were used:
(1) Leica TCS SPE based on Leica DM 2500 CSQ V-VIS
fluorescence microscope and equipped with four solid state
lasers, 405 nm (25 mW), 488 nm (15 mW), 532 nm (15 mW),
635 nm (15 mW); (2) Leica TCS SP2 AOBS based on Leica
DM IRE2 inverted microscope and equipped with continu-
ous lasers; Ar: 458 nm (5 mW), 476 nm (5 mW), 488
(20 mW), 514 nm (20 mW); HeNe: 543 nm (1.2 mW),
633 nm (10 mW).

The laser power and detector offset and gain were
manually adjusted prior to image stack collection, so that

the best combination of black background and avoidance of
black pixels and oversaturation in the structures of interest
was achieved. The image stacks were obtained by collecting
optical sections throughout the entire thickness of the spec-
imen. The images (optical sections) were acquired using
scan rates and frame averaging settings to yield the best
signal-to-noise ratio within a reasonable collection time. In
most cases water immersion planapochromat objectives HC
PL APO 20x/0.70 IMM CORR CS and HCX PL APO
63x/1.20 W CORR CS were used.

Due to attenuation of the light arising from deeper
parts of the sample, the images in the acquired stack were
enhanced by two methods: (1) online method—an intensity
compensation feature of Leica Confocal Software (version
2.61, Leica Microsystems GmbH, Heidelberg, Germany) in a
“linear-by-gain” mode, adjusting the photomultiplier tube
gain according to the z-coordinate of the current image and
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Table 2.  Excitation and Emission Wavelengths, Staining Protocols, and Targets of Applied Fluorescent Probes.
Excitation/Detection Staining
Wavelength 2 Final Time

Fluorescent Probe"" (nm) Concentration (min) Targets“”

Acid Fuchsin (84600) 543/600-650 170 uM 10 Chitin, vacuoles, cytoplasm

AlexaFluor 633 phalloidin (A22284) 633/650-700 130 nM 120 Actin

Aniline Blue (ANIL01600) 405/500-550 135 uM 10 Chitin

BCECF-AM (B8806) 458 and 488/500-550 2 uM 25 Cytoplasm, pH

CellTracker Green CMFDA (C7025) 488/500-580 4 uM 30 Cytoplasm, only metabolically active cells

DAPI (D1306) 405/450-520 300 uM 20 Nucleic acids

DIiOC;(3) (43580) 488(1P), 950 (2P)/500-6504) 13.6 uM, 4.5 uM 20-25 Membranes

Er-Tracker Blue-White DPX (E12353) 405 (1P), 790 (2P)/430—640""% 2 uM 120 Endoplasmic reticulum

FITC (46952) 488 (1P), 950 (2P)/500-580"% 1 mM 20 General staining, aminogroups

Hoechst 34580 (H21486) 405/430-490 1.8 mM 30 Nucleic acids

LysoTracker Red DND-99 (L7528) 543/580-620 200 nM 120 Lysosomes

MitoTracker Deep Red FM (M22426) 633/640-650 1 uM 120 Mitochondria

Propidium Iodide (70335) 532/600-670 7.5 uM 25 Nucleic acids

SYTO 16 (S7578) 488/500-530 10 uM 90 Nucleic acids

Texas Red C,-maleimide (T6008) 532/600-650 14 nM 40 General staining

TMRE (T669) 532/560-590 1 uM 20 Mitochondria

CUID codes (shown in brackets): Sigma-Aldrich (numerical and B8806), Fluka (ANTL01600), or Invitrogen (other alfanumerical).

(2Values actually used in the present study.
(3Manufacturers’ data.

(91P denotes one-photon excitation (CLSM); 2P denotes two-photon excitation (TPEM).

maintaining the best signal-to-noise ratio throughout the
sample; (2) offline method—a custom plug-in for the El-
lipse modular software package (ViDiTo, Slovakia; www.
vidito.com), adjusting the brightness and contrast in an
image series (stack) so that the effect of light attenuation is
minimized (Capek et al., 2006).

Autofluorescence was recorded at an excitation/detection
wavelength of 633/650-710 nm.

Two-Photon Excitation Microscopy

An above-mentioned confocal microscope (Leica TCS SP2
AOBS) was used in concert with a Ti:Sapphire Chameleon
Ultra family femtosecond laser Mira 900 (Coherent, Santa
Clara, CA, USA) tunable from 690 to 1,040 nm. A two-
photon fluorescence signal was collected by an internal
detector placed in the scanning head of the confocal micro-
scope (descanned, backscattering geometry). The detected
wavelength was adjusted by applying lambda scans to max-
imize the fluorescence signal of the sample. The average
laser power on the sample was in the order of milliwatts.

3D Visualization

CLSM and TPEM provided a series of perfectly aligned
optical sections of TA cells. To visualize them as 3D objects,
we used the Ellipse software package (ViDiTo Systems, Ko-
Sice, Slovakia) adapted to work with a specialized Volume-
Pro 1000 board (www.terarecon.com), performing volume
rendering of digital scalar data in real time (Capek et al.,
2009).

Stereological Measurement

The biovolume inside TA shells was determined by the
stereological “Fakir” method from images acquired by CLSM
or TPEM (Cruz-Orive, 1997; Kubinovd & Janacek, 2001;
Kubinovi et al., 2002). The fakir probe (Cruz-Orive, 1997)
is a systematic probe consisting of parallel test lines (re-
sembling nails of a fakir’s bed and piercing its surface).
We applied a highly efficient spatial grid consisting of
three mutually perpendicular half-period shifted fakir probes
(Kubinovéa & Janacek, 1998, 2001; Difato et al., 2004). The
TA biovolume (V') was estimated by the following formula:

estV = 1+.u? (L, + L, + Ls),

where L; (i = 1,2,3) is the total length of object-to-probe
intercepts (i’th fakir probe), the object being the biomass
boundary; u is the grid constant, i.e., the smallest distance
between neighboring parallel lines of the fakir probe. The
position of the spatial grid was random (Weibel, 1979).

RESULTS

Basic Morphology

The testate amoeba architecture was visualized by employ-
ing complementary optical contrasting modalities such as
phase contrast (Fig. 1b), polarization (Fig. 1c,e,g), and DIC
Nomarski (Fig. 1d,f,h) microscopy in unstained cells/shells.
The origin of the optically active objects highlighted in
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Figure 1. Optical contrasting of unstained testate amoebae:
(a—d) Hyalosphenia papilio (cyst), (e,f) Difflugia oblonga (living
cell), and (gh) Centropyxis sp. (two similar but different cells).
Note the complementary nature of (a) bright field, (b) phase
contrast, (c,e,g) polarization, and (d,£h) DIC Nomarski imaging.
Scale bar in all images, 50 wm.

Figure 1c is unclear and requires further elucidation. Test
scales and/or sand grains adsorbed on the test surface are
also highlighted by polarization microscopy (Fig. le,g). The
cyst architecture is best visualized by DIC Nomarski imag-
ing (Fig. 1d) while its outline is better rendered by phase
contrast (Fig. 1b). A bright-field image (no optical contrast-
ing) is shown for comparison (Fig. 1a).

Confocal Microscopy of Testate Amoebae 739

Surface Structures

SEM and ESEM were used to visualize the surface of TA
shells at high resolution. It is possible to observe the shell
coated with sand grains, its structure, and typical morpho-
logical characteristics (Fig. 2¢,d.e).

As ESEM does not require the samples to be metal-
coated, frequent artifacts caused by the coating procedure
are eliminated. The only requirement is to avoid mechanical
or chemical impurities, such as various particles or surface
films. ESEM microscopy often yields better quality images
of the shell, plus details just under the shell surface (Fig. 2e),
in comparison to SEM. However, SEM or ESEM cannot be
applied to visualize living TA.

Cellular Compartments

Labeling of the TA shell with acid fuchsin let us observe
secreted scales, or organic or mineral xenosomes used as
building blocks of the shell (Figs. 2a, 3m, 4a). In some cases,
the SEM and CLSM images nicely complement each other
(Fig. 2). Acid fuchsin also reveals the internal structure of
the cell (Fig. 2a,b,f,g), and such data can be combined with
autofluorescence observations of chlorophyll present in en-
dosymbionts (Fig. 3a,b).

Fluorescein derivative BCECF-AM labeled the cyto-
plasm in living TA individuals only (Fig. 3c,e), including a
protoplast, most likely of another organism, inside an other-
wise empty shell (Fig. 4e) or even cell nuclei during mitosis
(Fig. 4f). In living TA, BCECF-AM also stains the shell
(Fig. 3e) and its architecture can be observed in great detail
(Fig. 4c). However, the image is not as sharp as in the case of
acid fuchsin. BCECF-AM can also be used to determine
cytosolic pH (Fig. 4h).

Propidium iodide stains nucleic acids in dead individu-
als (Fig. 3h). DiOC5(3) stains membranes, including those
of organelles within the cell (Fig. 3i,j). Mitochondria can be
specifically labeled by MitoTracker Deep Red FM (Fig. 3k)
and TMRE (Fig. 31). Aniline blue visualizes some compo-
nents of TA shells and appears to be complementary to acid
fuchsin (Fig. 3m). CellTracker Green CMFDA also labels
living TA (Fig. 3n). Er-Tracker Blue White DPX stains the
endoplasmic reticulum of TA (Fig. 30). FITC binds to
proteins within the cell (Figs. 3p, 5a,b). The vacuoles of
Hyalosphenia papilio labeled by FITC (Figs. 3f,p, 5a) were
visualized using a single laser line wavelength (488 nm).

Staining by Hoechst 34580, DAPI, LysoTracker Red
DND-99, AlexaFluor 633 phalloidin, SYTO 16, and Texas
Red C,-maleimide was unsuccessful (data not shown). Other
results are summarized in Table 3.

Endosymbiotic Algae

Autofluorescence was recorded in Archerella flavum (Fig. 3a)
and Hyalosphenia papilio (Figs. 3b,f,i,j,,p, 4f). Both of them
are mixotrophic species (i.e., TA containing endosymbiotic
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Figure 2. Shell (test) shapes and surface structures visualized by CLSM, SEM, and ESEM. a,b: Nebela tincta in CLSM
(acid fuchsin staining); (a) maximum intensity projection, scale bar 20 um, (b) serial optical sections (overlay with
bright field). c¢: Nebela tincta in ESEM, scale bar 20 um. d: Centropyxis aculeata in SEM, details of aperture, scale bar
20 pwm. e: Trigonopyxis arcula in ESEM, scale bar 20 pum. f,g: Centropyxis aculeata in CLSM (acid fuchsin staining), cyst
inside the test, scale bar 50 wm; (f) serial optical sections, (g) overlay of bright field and maximum intensity projection
of image f.

algae with chlorophyll that exhibits autofluorescence). This
phenomenon could be useful in studies of symbionts inside
mixotrophic TA species. No autofluorescence was found in
heterotrophic species.

Identification of Living and Dead Amoebae

A combination of BCECF-AM and propidium iodide fluo-
rescent probes, commonly used to assess cell vitality (King,

2000), can be successfully applied to separate dead and
living TA (Table 1). While propidium iodide stained nucleic
acids in dead cells with permeable membrane (Fig. 3h),
fluorescence of BCECF-AM could only be observed in liv-
ing cells with an intact membrane (Fig. 3c,e), owing to
enzymatic processes that activate the fluorescent probe (see
Discussion for details). Amoebae shown in Fig. 3c,e,h were
subjected to the combined two-probe staining.

Table 3.

Suitability of Fluorescent Probes for Visualization of Various Compartments and Endosymbionts of Testate

Amoebae (— Unsuccessful, + Poor, ++ Successful, +++ Excellent Labeling).

Targets of Fluorescent Probes

Nucleolus, Specific

Fluorescent Probe Nucleus Cytoplasm Membranes Shell Organelles Symbionts
Acid Fuchsin - +++ — +++ — —
Aniline Blue — — — + — _
BCECF-AM - ++ + + — —
CellTracker Green CMFDA - + - - +4++0) —
DiOC;(3) - - 4+ + _ _
Er-Tracker Blue-White DPX - — — — ++ —
FITC - +++ — + _ _
MitoTracker Deep Red FM — — — — ++ N
Propidium Iodide + — - — — _
TMRE - - - - S—— _

“Organelles are visualized indirectly, owing to staining of the surrounding cytoplasm (Fig. 3n).
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Figure 3. Testate amoebae in CLSM as stained by various fluorescent probes. a: Archerella flavum, cytoplasm
and nucleolus (green, acid fuchsin) and endosymbionts’ chlorophyll-a (red, autofluorescence), maximum intensity
projection; yellow color is due to overlaying red and green channels. b: Hyalosphenia papilio, cytoplasm (green,
acid fuchsin) and endosymbionts’ chlorophyll (red, autofluorescence). ¢: Difflugia oblonga, cytoplasm of living TA
(green, BCECF-AM). d: Difflugia oblonga, bright-field image of c. e: Euglypha sp., cytoplasm and test (green,
BCECF-AM), maximum intensity projection; uneven cytoplasm staining may be attributed to a varying esterase activity
across cellular compartments. f: Hyalosphenia papilio, generic staining, preferentially of amine and sulthydryl groups
on protein molecules (green, FITC) and endosymbionts’ chlorophyll (red, autofluorescence), maximum intensity
projection. g: Hyalosphenia papilio, bright-field image of f. h: Difflugia oblonga, nucleus (nucleic acids) in dead TA
(red, propidium iodide), overlay with bright field. i,j: Hyalosphenia papilio, membranes of living TA [green, DiOC;(3)]
and endosymbionts’ chlorophyll (red, autofluorescence); (j) overlay of maximum intensity projection and bright field.
k: Euglypha sp., mitochondria (red, MitoTracker Deep Red FM), overlay of maximum intensity projection and bright
field. 1: Hyalosphenia papilio, mitochondria (yellow, TMRE), endosymbionts’ chlorophyll (red, autofluorescence), overlay
with bright field. m: Trigonopyxis arcula, test (blue, aniline blue; red, acid fuchsin), maximum intensity projection.
n: Nebela bohemica, generic staining (green, CellTracker Green CMFDA), overlay with bright field. o: Euglypha sp.,
endoplasmatic reticulum (cyan, Er-Tracker Blue-White DPX), overlay with bright field. p: Hyalosphenia papilio,
cyst, generic staining (green, FITC) and endosymbionts’ chlorophyll (red, autofluorescence). Scale bar in all images,
30 um.
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Figure 4. Advantages of CLSM imaging of testate amoebae. a: Tracheleuglypha dentata in CLSM, empty test (red,
acid fuchsin), maximum intensity projection, scale bar 10 um. b: Trinema sp. in ESEM, test surface, scale bar 10 um.
¢,d: Nebela bohemica in CLSM, detail of the test structure (green, BCECF-AM); (c) maximum intensity projection,
(d) bright field, scale bar 10 um. e: Euglypha sp. in CLSM, protoplast inside the test (green, BCECF-AM), overlay with
bright field, scale bar 10 wm. f: Hyalosphenia papilio in CLSM, cell nucleus in mitosis and cytoplasm (green, BCECF-AM)
and endosymbionts’ chlorophyll (red, autofluorescence), scale bar 30 um. g: Corythion dubium in CLSM, cytoplasm and
test (green, BCECF-AM) with lateral views (optical sections along the white lines are more visible in the online version),
scale bar 10 wm. h: Euglypha sp., pH distribution determined by BCECF-AM (ratiometric probe, pH-to-color not as-

signed, pseudocolor image), scale bar 10 wm.

Figure 5. Comparison of CLSM and TPEM in terms of penetrating depth (shown in lateral views) in Hyalosphenia
papilio. Organic components (green, FITC) and endosymbionts’ chlorophyll (red, autofluorescence); (a) CLSM,
(b) TPEM, and (c) bright-field image of a. Scale bar in all images, 30 wm.

Rose Bengal (rB) is also commonly used to identify
dead and living TA individuals (Patterson et al., 2002).
However, no living specimens were detected by rB in our
samples from the same locality and time. This may be
attributed to generic problems with rB staining as described

by Bernhard (2000). Thus, we recommend the BCECEF-
AM + propidium iodide method over rB staining alone to
identify dead/living TA individuals. Separating dead and
living TA individuals is important in ecological studies
(Nguyen-Viet et al., 2008). Moreover, propidium iodide also
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Table 4. Biovolume of Testate Amoeba Inside Their Shells Eval-
uated by the Stereological Fakir Method.

Length ~ Width Biovolume
Sample Dye (um) (am) (um?)
Euglypha sp. BCECF-AM 64.6 34.1 3.04 X 10*
Cyphoderia ampulla~ BCECF-AM 112 50.5 3.90 X 10*
Difflugia oblonga BCECF-AM 164 57.3 241X 10°
Euglypha sp. (cyst) Acid fuchsin 53 25 9.74 X 10°

allows counting of nuclei, which is important in taxonomy
(Meisterfeld, 2002a, 2002b).

Opaque/Large Amoebae

In small TA species (10-100 pum) with translucent shells,
standard CLSM yields satisfactory results (Fig. 4g). Prob-
lems occur with larger (thicker) species and those that
build opaque shells (typically made of agglutinated
organic or mineral particles). Since both emission and
excitation light is strongly absorbed by the shell and the
amoeba itself, CLSM typically makes it possible to acquire
TA images from depths up to 20 wm only (Fig. 5a). In
deeper layers the images suffer from low signal-to-noise
ratio.

These problems are partly solved by TPEM whose
excitation light is in the infrared range capable of penetrat-
ing deeper into most biological objects (Fig. 5b), up to
70 um in TA. This is sufficient for the vast majority of TA
species and enables biovolume estimation of the amoeba
inside the shell, and 3D reconstructions.

3D and Biovolume Data

3D visualizations based on CLSM and TPEM images (ac-
quired from one direction only) make it possible to examine
the object from any angle (Fig. 6). Owing to the 3D data, it
is possible to precisely localize in the amoeba chlorophyll
(Fig. 6a—d), the activity of nonspecific esterases (Fig. 6e—h)
or any other fluorescent structure of interest.

The results of stereological biovolume measurement in
four TA specimens are summarized in Table 4. By using the
“Fakir” method, we were able to evaluate biovolumes with
sufficient accuracy while keeping the image acquisition time
reasonably short (tens of minutes per one image stack).

DiscussIioON

Future progress in testate amoeba taxonomy and ecology
requires a detailed morphological characterization of their
shells and cells, as it helps to select the criteria for distin-
guishing closely related, morphologically similar species. A
detailed examination of cell content, e.g., quantification of

Confocal Microscopy of Testate Amoebae 743

organelles and (in mixotrophic species) endosymbionts, or
biovolume estimation yields information about the physio-
logical state of the amoeba, with implications in ecophysiol-
ogy and ecotoxicology. Likewise, it is important to reliably
recognize living and dead individuals.

The relatively simple optical contrasting modalities such
as phase contrast, DIC-Nomarski, or Hoffman modulation
contrast reveal the variations of a refractive index within the
specimen and are akin to the digital holographic micros-
copy mentioned toward the end of Discussion. They are
particularly suitable for examining nonabsorbing objects
such as unstained living cells (Murphy, 2001). The structure
of the TA shell can often be visualized by a simple polariza-
tion microscopy at a negligible cost, owing to the shell’s
(bio) mineralized nature (Fig. le,g). In this context, such
modes are complementary with CLSM better capable of
visualizing cell components stained with specific fluorescent
probes. For example, BCECF-AM binds to the organic part
of the TA shell only (Fig. 4c).

SEM and ESEM are frequently used for taxonomical
descriptions of testate amoebae, and less often in ecological
studies. They make it possible to examine the surface fea-
tures of TA at high resolution and a very reasonable depth
of field, and to perform quantitative elemental analyses of
shell structures (Ogden & Hedley, 1980; Todorov et al.,
2009). However, SEM and ESEM cannot be used to examine
living TA or the inner architecture of the amoeba or the
shell. Conventional SEM can only operate in a high-vacuum
mode, which dictates the rather complex specimen prepara-
tion protocol, itself a source of a number of artifacts. ESEM
and some of its alternatives, such as variable pressure SEM
(VP-SEM), allow the examination of specimens under a
wide range of gaseous conditions. These permit an investi-
gation of the biological samples, usually only nonliving
ones, in a closer-to-natural (uncoated) state, and are appli-
cable to practically any TA shell type. The drawback is a
lower image contrast of the uncoated sample.

The fluorescent probes required in CLSM can penetrate
into the amoeba only through the shell operculum and
some of them thus require a longer loading/staining time.
The reproducibility of the labeling protocols is often prob-
lematic. For example, Acanthamoeba castellanii was success-
fully labeled by rhodamine tagged phalloidin complex to
visualize actin (Gonzélez-Robles et al., 2008). However, we
failed to stain TA with this probe.

It is more difficult to stain shell-enclosed TA than
naked amoebae or animal cells. The same applies to foram-
inifera that also build their shells with an operculum.
Bernhard et al. (2004) successfully stained foraminifera
by calcein, which we have not tested in TA. Instead, we
experimented with fluorescein derivative BCECF-AM, a
similar type of fluorescent probe. In many cases a trial-and-
error approach had to be applied to optimize the labeling
protocols in terms of photodamage, toxicity, and photo-
bleaching, and ten fluorescent probes were successfully
used.
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Figure 6. 3D reconstructions of testate amoebae. a—d: Hyalosphenia papilio test (ca. 150 pwm in length), membranes and
shells [green, DIOC;5(3)] and endosymbionts’ chlorophyll (red, autofluorescence) in CLSM (the surface layer lines
represent the amoebae outline in individual optical sections used in the reconstructions); (a) VolumePro 1000 rendering
board, (b—d) OpenGL-based volume rendering; the same cell is shown in images a and d. e,f: Euglypha sp. test (75 um in
length, original image in Fig. 3e), shells and enzymatic activity of cytoplasm (green, BCECF-AM) in CLSM, maximum
intensity projection; (e) front view, (f) rear view. g,h: Corythion dubium test (35 um in length, original image in Fig. 4g),
shells and enzymatic activity in cytoplasm (green, BCECF-AM) in CLSM, maximum intensity projection; (g) front view,

(h) rear view.

Rose Bengal (rB) is the most commonly used probe
to distinguish live/dead shell-enclosed TA or foraminifera
cells. rB is a biological dye that is supposed to bind to
cytosolic proteins, rendering the cytoplasm in a rose color
(Walton, 1952). The main advantages of rB are quick
staining and a relatively low price. However, necrotic as well
as healthy cytoplasm is stained in foraminifera. It has been
shown that rB reacts even weeks or months after individu-
al’s death. Moreover, even specimens known to contain
dead cells do not always become rB stained (Martin &
Steinker, 1973; Lutze & Altenbach, 1991). Generally, rB

should not be used as the only dye to detect live/dead cells
(Bernhard, 2000). Sudan black (a lipophilic stain) is yet
another probe that is often used to distinguish live/dead
foraminifera and suffers from similar drawbacks as rB—
staining opaque specimens may yield ambiguous results
(Bernhard, 2000).

These problems are absent if a combination of BCECE-
AM and propidium iodide is used; live/dead TA are clearly
distinguished. BCECF-AM probe is nonfluorescent and
membrane-permeable in its basic state. Upon cleavage by
nonspecific esterases, it becomes fluorescent but also mem-
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brane impermeable, so it gets trapped in living cells but
quickly disappears from dead or membrane-damaged cells.
Surprisingly, we observed fluorescence not only inside the
living cells, but also in the shells of living amoebae (between
idiosomes), perhaps due to nonspecific esterases that may
be part of the organic (proteinaceous) matrix sustaining the
shell. This notion is supported by the fact that the fluores-
cence was detected in the shells of living TA only.

In mammalian tissues, mitochondria are among the
first organelles that exhibit distinct structural alterations
during necrosis (Raffray & Cohen, 1997). If intact mitochon-
dria are observed in TA, one may conclude that the cell is
alive at the time of staining. In our samples differences were
encountered in spatial distribution of mitochondria be-
tween Euglypha sp. (a heterotrophic species) labeled by
MitoTracker Deep Red FM (Fig. 3k) and Hyalosphenia papilio
(a mixotrophic species) labeled by TMRE (Fig. 3l). It is
premature yet to draw any conclusions about the two nutri-
tion strategies but both of these probes are known to
accumulate in active mitochondria only.

To determine the biomass inside the shell, an optical
diffraction tomography technique based on digital holo-
graphic microscopy (DHM) can be utilized. This method,
essentially an adaptation of an interference-phase micros-
copy utilizing coherent light, enables a tomographic recon-
struction of the microscopic object with a resolution of
ca. 1.5 um in all three directions (Charriére et al., 2006). Very
small objects such as organelles or endosymbionts are better
modeled by CLSM owing to its optical sectioning capability
and better lateral/axial resolution (Diaspro, 2002; Matsu-
moto, 2002; Pawley, 2006) although in larger specimens such
as Hyalosphenia papilio, the laser light cannot penetrate suffi-
ciently deep into the amoeba, and TPEM (Denk et al., 1990;
Diaspro, 2002) would have to be employed instead. In DHM,
this problem is mitigated simply by rotating the sample.

Nguyen-Viet et al. (2008) evaluated TA biovolumes by
assuming they are of regular geometrical shapes. Obviously,
this methodology enables fast volume measurements at the
expense of accuracy.

CONCLUSION

The present study highlights the advantages and limitations
of various specialized microscopic imaging modalities, as
applied to testate amoeba morphology. The CLSM and TPEM
data are the first of its kind obtained in testate amoebae.
Jointly with associated 3D reconstructions and stereological
analyses, the multimodal imaging is of potential interest,
e.g., in taxonomy, ecophysiology, or ecotoxicology.
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