122 research outputs found

    The spectral-timing properties of upper and lower kHz QPOs

    Get PDF
    Soft lags from the emission of the lower kilohertz quasi-periodic oscillations (kHz QPOs) of neutron star low mass X-ray binaries have been reported from 4U1608-522 and 4U1636-536. Those lags hold prospects for constraining the origin of the QPO emission. In this paper, we investigate the spectral-timing properties of both the lower and upper kHz QPOs from the neutron star binary 4U1728-34, using the entire Rossi X-ray Timing Explorer archive on this source. We show that the lag-energy spectra of the two QPOs are systematically different: while the lower kHz QPO shows soft lags, the upper kHz QPO shows either a flat lag-energy spectrum or hard variations lagging softer variations. This suggests two different QPO-generation mechanisms. We also performed the first spectral deconvolution of the covariance spectra of both kHz QPOs. The QPO spectra are consistent with Comptonized blackbody emission, similar to the one found in the time-averaged spectrum, but with a higher seed-photon temperature, suggesting that a more compact inner region of the Comptonization layer (boundary/spreading layer, corona) is responsible for the QPO emission. Considering our results together with other recent findings, this leads us to the hypothesis that the lower kHz QPO signal is generated by coherent oscillations of the compact boundary layer region itself. The upper kHz QPO signal may then be linked to less-coherent accretion-rate variations produced in the inner accretion disk, being detected when they reach the boundary layer.Comment: 20 pages, 7 figures, accepted for publication in Ap

    JUMPSAT: Qualifying three equipments in one Cubesat mission

    Get PDF
    We work on a student 3U Cubesat mission, called JUMPSAT, expected for 2017. This is a collaborative project involving both institutions (CNES, ONERA) and schools (ISAE, TELECOM Bretagne). The different equipments to qualify are the Supaero Star Tracker, which measures stars’ luminosity to infer the satellite’s attitude, a detector for particles trapped in the Earth magnetic field designed by the ONERA, and the AOCS. Uplink and Downlink communications will be provided during the mission by the HETE Primary Ground Stations. JUMPSAT is the first Cubesat which needs a three axis attitude control, which involves an innovative mission analysis, to overcome all these constraints. The mission analysis deals with the orbit’s determination, the Cubesat’s structure, the power strategy, and the visibility balance. The particles detector is the only constraint for the altitude of the satellite: we can get meaningful data only at altitudes higher than 700 km. Moreover, the most interesting zones are South Atlantic and poles. But a circular orbit with this altitude does not respect the LOS (French space act).The structure of the Cubesat is also hard to define. To get information from the satellite, we need an antenna, and an attitude and orbital control system to point the antenna at the ground station and the Star Tracker at the stars. Solar Panels cannot be opened out because of the micro elements that could be settled on the particles detector. However, fixed solar panels are not very efficient to recharge batteries. The power balance shows critical problems: both attitude control system and the Star Tracker consume a lot, and cannot work at the same time during the whole orbit. However, all the components are linked: the Star Tracker is not efficient if the satellite attitude is not stabilized; the antenna functioning must be synchronized with visibilities by the ground station. Anyway, the visibility balance stresses the point that a ground station at Toulouse would be particularly welcome. We need also to take into account phenomena of eclipse and satellite drift. To conclude, our mission analysis is deeply constrained by the equipments we want to qualify. Our task is to find the optimal orbit, suggest a power strategy considering the orbital constraints and components’ physical parameters, and to study the visibility balance. It is a real challenge in terms of power consumption, architecture, orbital strategy for such a small satellite

    A Systematic Spectral-Timing Analysis of Kilohertz Quasi-Periodic Oscillations in the Rossi X-ray Timing Explorer Archive

    Get PDF
    Kilohertz quasi-periodic oscillations or kHz QPOs occur on the orbital timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2^{2} ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively, yet no model completely describes all the properties of kHz QPOs. Here, we present a systematic study of spectral-timing products of kHz QPOs from low-mass X-ray binary systems using archival Rossi X-ray Timing Explorer/Proportional Counter Array data. For the lower kHz QPOs in fourteen objects and the upper kHz QPOs in six, we were able to obtain correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra and intrinsic coherence. For the lower kHz QPOs, we find a monotonic decrease in lags with increasing energy, rising covariance to ~12 keV, and near unity coherence at all energies. For the upper kHz QPOs, we find near zero lags, rising covariance to ~12 keV, and less well-constrained coherence at all energies. These results suggest that while kHz QPOs are likely produced by similar mechanisms across the population of LMXBs, the lower kHz QPOs are likely produced by a different mechanism than upper kHz QPOsComment: 16 pages, 9 figures, Accepted for publication in The Astrophysical Journa

    JUMPSAT: Qualifying three equipments in the CubeSat mission

    Get PDF
    JUMPSAT is a 3-Unit CubeSat mission expected for launch in 2017. It is a collaborative project involving the French research institutes CNES and ONERA as well as two universities, the Institut Supérieur de l'Aéronautique et de l'Espace and TELECOM Bretagne. The main mission objectives are the technological verification of both the three-axis attitude control system as well as the verification of two embedded payloads: A low cost Star Tracker developed by ISAE-Supaero for future small satellite missions and a directional radiation sensor for precise mapping of the Earth radiation belt. This article focuses on the mission concept and the status of the mission design in fall 2013. Main mission parameters are introduced, with emphases on the characteristic properties of the Jumpsat mission, as for example the choice of a sun-synchronous elliptical low-Earth Orbit, which is necessary to be in compliance with the payload requirements and at the same time to ensure space debris prevention. Furthermore, due to the limited observation time of a polar satellite, it was decided to utilize a distributed ground station network on S-band frequency for ensuring the necessary communication bandwidth for up- and downlink. The space segment will be equipped with deployable solar panels for improving the thermal and power budget of the overall system. Finally, a brief overview of the specifications and design of the attitude control system and both payloads are also given in the article

    Athena X-IFU event reconstruction software: SIRENA

    Get PDF
    Trabajo presentado a la Conferencia: Exploring the Hot and Energetic Universe: The first scientific conference dedicated to the Athena X-ray observatory; celebrada en Madrid (España) del 8 a 10 de septiembre de 2015.This contribution describes the status and technical details of the SIRENA package, the software currently in development to perform the on board event energy reconstruction for the Athena calorimeter X-IFU. This on board processing will be done in the X-IFU DRE unit and it will consist in an initial triggering of event pulses followed by an analysis (with the SIRENA package) to determine the energy content of such events.The current algorithm used by SIRENA is the optimal filtering technique (also used by ASTRO-H processor) although some other algorithms are also being tested.Here we present these studies and some preliminary results about the energy resolution of the instrument based on simulations done with the SIXTE simulator (http://www.sternwarte.uni-erlangen.de/research/sixte/) in which SIRENA is integrated.This work has been funded by the Spanish Ministries MICINN and MINECO under projects ESP2006-13608-C02-01, AYA2009-08059, AYA2010-21490-C02-01, AYA2012-39767-C02-01, ESP2013-48637-C2-1-P, ESP2014-53672-C3-1-P.Peer Reviewe

    Probing X-ray burst -- accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations

    Full text link
    The intense radiation flux of Type I X-ray bursts is expected to interact with the accretion flow around neutron stars. High frequency quasiperiodic oscillations (kHz QPOs), observed at frequencies matching orbital frequencies at tens of gravitational radii, offer a unique probe of the innermost disk regions. In this paper, we follow the lower kHz QPOs, in response to Type I X-ray bursts, in two prototypical QPO sources, namely 4U 1636-536 and 4U 1608-522, as observed by the Proportional Counter Array of the Rossi X-ray Timing Explorer. We have selected a sample of 15 bursts for which the kHz QPO frequency can be tracked on timescales commensurable with the burst durations (tens of seconds). We find evidence that the QPOs are affected for over ~200 s during one exceptionally long burst and ~100 s during two others (although at a less significant level), while the burst emission has already decayed to a level that would enable the pre-burst QPO to be detected. On the other hand, for most of our burst-kHz QPO sample, we show that the QPO is detected as soon as the statistics allow and in the best cases, we are able to set an upper limit of ~20 s on the recovery time of the QPO. This diversity of behavior cannot be related to differences in burst peak luminosity. We discuss these results in the framework of recent findings that accretion onto the neutron star may be enhanced during Type I X-ray bursts. The subsequent disk depletion could explain the disappearance of the QPO for ~100 s, as possibly observed in two events. However, alternative scenarios would have to be invoked for explaining the short recovery timescales inferred from most bursts. Clearly the combination of fast timing and spectral information of Type I X-ray bursts holds great potential in the study of the dynamics of the inner accretion flow around neutron stars.Comment: 8 pages, 9 figures, appears in Astronomy & Astrophysics, Volume 567, id.A80, published 07/201

    Thermal simulations of temperature excursions on the Athena X-IFU detector wafer from impacts by cosmic rays

    Get PDF
    We present the design and implementation of a thermal model, developed in COMSOL, aiming to probe the wafer-scale thermal response arising from realistic rates and energies of cosmic rays at L2 impacting the detector wafer of Athena X-IFU. The wafer thermal model is a four-layer 2D model, where 2 layers represent the constituent materials (Si bulk and Si3_{3}N4_{4} membrane), and 2 layers represent the Au metallization layer's phonon and electron temperatures. We base the simulation geometry on the current specifications for the X-IFU detector wafer, and simulate cosmic ray impacts using a simple power injection into the Si bulk. We measure the temperature at the point of the instrument's most central TES detector. By probing the response of the system and pulse characteristics as a function of the thermal input energy and location, we reconstruct cosmic ray pulses in Python. By utilizing this code, along with the results of the GEANT4 simulations produced for X-IFU, we produce realistic time-ordered data (TOD) of the temperature seen by the central TES, which we use to simulate the degradation of the energy resolution of the instrument in space-like conditions on this wafer. We find a degradation to the energy resolution of 7 keV X-rays of ≈\approx0.04 eV. By modifying wafer parameters and comparing the simulated TOD, this study is a valuable tool for probing design changes on the thermal background seen by the detectors.Comment: accepted for publication in the Journal of Low Temperature Physic

    The X-IFU end-to-end simulations performed for the TES array optimization exercise

    Get PDF
    Trabajo presentado a la Conferencia: Exploring the Hot and Energetic Universe: The first scientific conference dedicated to the Athena X-ray observatory; celebrada en Madrid (España) del 8 a 10 de septiembre de 2015.-- et al.The focal plane assembly of the Athena X-ray Integral Field Unit (X-IFU) includes as the baseline an array of ~4000 single size calorimeters based on Transition Edge Sensors (TES). Other sensor array configurations could however be considered, combining TES of different properties (e.g. size). In attempting to improve the X-IFU performance in terms of field of view, count rate performance, and even spectral resolution, two alternative TES array configurations to the baseline have been simulated, each combining a small and a large pixel array. With the X-IFU end-to-end simulator, a sub-sample of the Athena core science goals, selected by the X-IFU science team as potentially driving the optimal TES array configuration, has been simulated for the results to be scientifically assessed and compared. In this contribution, we will describe the simulation set-up for the various array configurations, and highlight some of the results of the test cases simulated.Peer Reviewe

    Simulation of Radiative Transfer Within X-ray Microcalorimeter Absorbers

    Get PDF
    We present Monte Carlo simulations of radiative transfer within the absorbers of X-ray microcalorimeters, utilizing a numerical model for the photon propagation and photon absorption process within the absorber structure. In our model, we include effects of Compton scattering off bound electrons and fluorescence. Scattered or fluorescence photons as well as Auger and photoelectrons escaping the absorber can result in partial energy depositions. By implementing a simplified description of the physical processes compared to existing comprehensive particle transport software frameworks, our model aims to provide representative results at a small computational effort. This approach makes it possible to use our model for quick assessments, parametric studies, and application in other Monte Carlo-based instrument simulators like SIXTE, a software package for X-ray astronomical instrumentation. To study the impact of the energy loss effects on the spectral response of a microcalorimeter, we apply our model to the sensors of the cryogenic X-ray spectrometer X-IFU onboard the future Athena X-ray observatory
    • 

    corecore