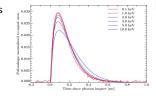

SIRENA is the software aimed at performing the on board event energy reconstruction for the Athena calorimeter X-IFU. This on board processing will be done in the X-IFU Digital Readout Electronics (DRE) unit and it will consist in an initial triggering of event pulses followed by an analysis (with the SIRENA

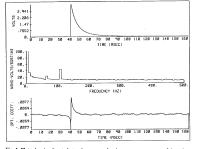


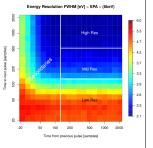
Development under SIXTE (P12.14) environment for end-to-end simulations

Simulation of X-IFU TES physics (tool: tessim)

Numerical solution of differential equations for T (t), I(t)[3]

Event Reconstruction Triggering algorithm for (Energy & Energy resolution Pulse detection determination by (to be integrated in SIXTE) Opt. Filt., Covar. Mat, etc.)



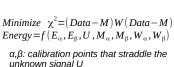

ECONSTRUCTION METHODS (work in progress)

Optimal Filtering

∠Pulses are scaled versions of a single shape: Response of detector is linear (or energy-dependent filter interpolation) XNoise is stationary

Data $D(t)=H\times S(t)$ Minimize $\chi^2 = \sum_{j=1}^{\infty} \frac{[D(f) - H \times S(f)]^2}{2}$ $H = k \sum D(t) OptFil(t)$

Energy resolution map for 6 keV and one of the X-IFU configurations in study (see P12.10) done with SIRENA + OptFilt. Note: SIXTE simulated data. Optimal filter to the exact input energy (from simulations) has been used.

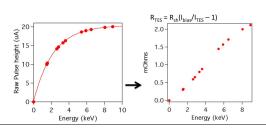


Least squares optimal filter varying with photon energy. Accounts for noise non-stationarity & detector non-linearity

Calibration:

Densely spaced narrow lines for calibration

• Model template (M) + covariance matrix (deviations from model) + weight matrix (W) (inverse of covariance matrix)



Resistance Space

PCA [10,11,12]

Others?...

Optimal Filter after transforming signal I_{TES} to R_{TES} : Removes nonlinearity due to the bias circuit

[1] Barret, D. et al, 2013, arXiv:1308.6784v1 [2] Ravera L. et al. 2014, SPIE Conf. Proc, 9144
[3] Irwin K.D., Hilton G.C., 2005 Cryo. Part. Det., ed. C. Enss, Springer
[4] Ceballos M.T. et al. 2013, ASP Conference Series, Vol. 475, 25 [5] Szymkowiak, R.L., 1993, JLTP, 93,281
[6] Boyce K et al. 1999, Proc. SPIE 3765
[7] Fixen D.J. et al,2004, NI&MPR A, 520, 555
[8] Fixen D.J. et al,2014, JLTP, 176,16

[9] Bandler, S. et al. 2004, NI&MPR A, 559,817 [10] Bandler S. et al. LTD-16 [11] Yan D. et al LTD-16 [12] Busch et al. LTD-15

Acknowledgements: This work has been funded by the Spanish Ministries MICINN and MINECO under projects ESP2006-13608-C02-01, AYA2009-08059, AYA2010-21490-C02-01, AYA2012-39767-C02-01,ESP2013-48637-C2-1-P,ESP2014-53672-C3-1-P