404 research outputs found

    The etico-political and theoretical reconstruction of contemporary economic doctrines

    Get PDF

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    Optical spectroscopy and the nature of the insulating state of rare-earth nickelates

    Full text link
    Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO3_3 and SmNiO3_{3} films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure, and allow to identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined effect of bond-disproportionation and Mott physics associated with half of the disproportionated sites. We also provide insights into the structure of excited states above the gap.Comment: 12 pages, 13 figure

    Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases

    Get PDF
    Antagonistic fungi such as Trichoderma reesei are promising alternatives to conventional fungicides in agriculture. This is especially true for worldwide occurring grapevine trunk diseases, causing losses of US$1.5 billion every year, at which conventional fungicides are mostly ineffective or prohibited by law. Yet, applications of Trichoderma against grapevine trunk diseases are limited to preventive measures, suffer from poor shelf life, or uncontrolled germination. Therefore, we developed a mild and spore-compatible layer-by-layer assembly to encapsulate spores of a new mycoparasitic strain of T. reesei IBWF 034-05 in a bio-based and biodegradable lignin shell. The encapsulation inhibits undesired premature germination and enables the application as an aqueous dispersion via trunk injection. First injected into a plant, the spores remain in a resting state. Second, when lignin-degrading fungi infect the plant, enzymatic degradation of the shell occurs and germination is selectively triggered by the pathogenic fungi itself, which was proven in vitro. Germinated Trichoderma antagonizes the fungal pathogens and finally supplants them from the plant. This concept enables Trichoderma spores for curative treatment of esca, one of the most infective grapevine trunk diseases worldwide

    A phased array-based method for damage detection and localization in thin plates

    Get PDF
    A method for damage localization based on the phased array idea has been developed. Four arrays oftransducers are used to perform a beam-forming procedure. Each array consists of nine transducersplaced along a line, which are able to excite and register elastic waves. The A0 Lamb wave mode hasbeen chosen for the localization method. The arrays are placed in such a way that the angulardifference between them is 458 and the rotation point is the middle transducer, which is common for allthe arrays. The idea has been tested on a square aluminium plate modeled by the Spectral Element Method. Two types of damage were considered, namely distributed damage, which was modeled asstiffness reduction, and cracks, modeled as separation of nodes between selected spectral elements.The plate is excited by a wave packet. The whole array system is placed in the middle of the plate.Each linear phased array in the system acts independently and produces maps of a scanned fieldbased on the beam-forming procedure. These maps are made of time signals (transferred to spacedomain) that represent the difference between the damaged plate signals and those from the intactplate. An algorithm was developed to join all four maps. The final map is modified by proposed signal processing algorithm to indicate the damaged area of the plate more precisely. The problem fordamage localization was investigated and exemplary maps confirming the effectiveness of theproposed system were obtained. It was also shown that the response of the introduced configurationremoves the ambiguity of damage localization normally present when a linear phased array is utilized.The investigation is based exclusively on numerical data

    Cultivo orgânico do morangueiro: densidade de plantio, crescimento e produtividade de cultivares de ?dia neutro?

    Get PDF
    bitstream/item/78783/1/Boletim-160.pd
    corecore