126 research outputs found

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    Low-energy description of the metal-insulator transition in the rare-earth nickelates

    Get PDF
    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and Hund's coupling J, the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of interaction parameters. Furthermore, we find that when U−3J is small or negative, a spontaneous instability to bond disproportionation takes place for large enough J. This minimal theory emphasizes that a small or negative charge-transfer energy, a large Hund's coupling, and a strong coupling to bond disproportionation are the key factors underlying the transition. Experimental consequences of this theoretical picture are discussed

    Optical spectroscopy and the nature of the insulating state of rare-earth nickelates

    Full text link
    Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO3_3 and SmNiO3_{3} films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure, and allow to identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined effect of bond-disproportionation and Mott physics associated with half of the disproportionated sites. We also provide insights into the structure of excited states above the gap.Comment: 12 pages, 13 figure

    Single atom quantum walk with 1D optical superlattices

    Get PDF
    A proposal for the implementation of quantum walks using cold atom technology is presented. It consists of one atom trapped in time varying optical superlattices. The required elements are presented in detail including the preparation procedure, the manipulation required for the quantum walk evolution and the final measurement. These procedures can be, in principle, implemented with present technology.Comment: 6 pages, 7 figure

    Synthesis and characterization of entangled mesoscopic superpositions for a trapped electron

    Get PDF
    We propose a scheme for the generation and reconstruction of entangled states between the internal and external (motional) degrees of freedom of a trapped electron. Such states also exhibit quantum coherence at a mesoscopic level.Comment: 4 pages, 1 figure, RevTeX (twocolumn

    Scalable Neutral Atom Quantum Computer with Interaction on Demand: Proposal for Selective Application of Two-Qubit Gate

    Full text link
    We propose a scalable neutral atom quantum computer with an on-demand interaction through a selective two-qubit gate operation. Atoms are trapped by a lattice of near field Fresnel diffraction lights so that each trap captures a single atom. One-qubit gate operation is implemented by a gate control laser beam which is applied to an individual atom. Two-qubit gate operation between an arbitrary pair of atoms is implemented by sending these atoms to a state-dependent optical lattice and making them collide so that a particular two-qubit state acquires a dynamical phase. We give numerical evaluations corresponding to these processes, from which we estimate the upper bound of a two-qubit gate operation time and corresponding gate fidelity. Our proposal is feasible within currently available technology developed in cold atom gas, MEMS, nanolithography, and various areas in optics.Comment: 10 pages, 9 figur

    Optical properties of LaNiO3 films tuned from compressive to tensile strain

    Full text link
    Materials with strong electronic correlations host remarkable -- and technologically relevant -- phenomena such as magnetism, superconductivity and metal-insulator transitions. Harnessing and controlling these effects is a major challenge, on which key advances are being made through lattice and strain engineering in thin films and heterostructures, leveraging the complex interplay between electronic and structural degrees of freedom. Here we show that the electronic structure of LaNiO3 can be tuned by means of lattice engineering. We use different substrates to induce compressive and tensile biaxial epitaxial strain in LaNiO3 thin films. Our measurements reveal systematic changes of the optical spectrum as a function of strain and, notably, an increase of the low-frequency free carrier weight as tensile strain is applied. Using density functional theory (DFT) calculations, we show that this apparently counter-intuitive effect is due to a change of orientation of the oxygen octahedra.The calculations also reveal drastic changes of the electronic structure under strain, associated with a Fermi surface Lifshitz transition. We provide an online applet to explore these effects. The experimental value of integrated spectral weight below 2 eV is significantly (up to a factor of 3) smaller than the DFT results, indicating a transfer of spectral weight from the infrared to energies above 2 eV. The suppression of the free carrier weight and the transfer of spectral weight to high energies together indicate a correlation-induced band narrowing and free carrier mass enhancement due to electronic correlations. Our findings provide a promising avenue for the tuning and control of quantum materials employing lattice engineering.Comment: 12 pages, 11 figure

    Charge self-consistent many-body corrections using optimized projected localized orbitals

    Get PDF
    In order for methods combining ab initio density-functional theory and many-body techniques to become routinely used, a flexible, fast, and easy-to-use implementation is crucial. We present an implementation of a general charge self-consistent scheme based on projected localized orbitals in the projector augmented wave framework in the Vienna Ab Initio Simulation Package (VASP). We give a detailed description on how the projectors are optimally chosen and how the total energy is calculated. We benchmark our implementation in combination with dynamical mean-field theory: first we study the charge-transfer insulator NiO using a Hartree-Fock approach to solve the many-body Hamiltonian. We address the advantages of the optimized against non-optimized projectors and furthermore find that charge self-consistency decreases the dependence of the spectral function - especially the gap - on the double counting. Second, using continuous-time quantum Monte Carlo we study a monolayer of SrVO3_3, where strong orbital polarization occurs due to the reduced dimensionality. Using total-energy calculation for structure determination, we find that electronic correlations have a non-negligible influence on the position of the apical oxygens, and therefore on the thickness of the single SrVO3_3 layer.Comment: 11 pages, 6 figure

    Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation

    Full text link
    Using pole decompositions as starting points, the one parameter (-1 =< c < 1) nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of premixed gaseous flames is studied in the large-wrinkle limit. The singular integral equations for pole densities are closely related to those satisfied by the spectral density in the O(n) matrix model, with n = -2(1 + c)/(1 - c). They can be solved via the introduction of complex resolvents and the use of complex analysis. We retrieve results obtained recently for -1 =< c =< 0, and we explain and cure their pathologies when they are continued naively to 0 < c < 1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the shapes of steady isolated flame crests, and then bicoalesced periodic fronts. These theoretical results fully agree with numerical resolutions. Open problems are evoked.Comment: v2: 29 pages, 6 figures, some typos correcte
    • 

    corecore