2,091 research outputs found

    Test of quantum nonlocality via vector meson decays to KSKSK_SK_S

    Full text link
    In the system of a pair of quantum-entangled neutral kaons from meson decays, when one kaon collapses into the KSK_S state, the other will collapse instantaneously into the KLK_L state due to entanglement and nonlocality. However, if the alternative hypothesis is correct and there's a time window during which one kaon is unaware that the other has decayed, some quantum mechanically prohibited KSKSK_SK_S decays may occur. We calculate the branching ratios of KSKSK_SK_S in vector meson decays under the locality hypothesis and compare them with experimental results. We show that the branching ratio of J/ψ→KSKSJ/\psi\rightarrow K_SK_S under locality assumption is already excluded by the BESIII experimental upper limit. Additional experimental results are proposed to perform this test in the future.Comment: 7 pages, 3 figures, 1 tabl

    Introducing upfront losses as well as gains decreases impatience in intertemporal choices with rewards

    Get PDF
    People tend to prefer smaller and sooner (SS) rewards over larger and later (LL) ones even when the latter are much larger. Previous research have identified several ways to enhance people’s patience. Adding to this literature, the current paper demonstrates that introduction of upfront losses as well as gains to both SS and LL rewards can decrease people’s impatience. This effect is incompatible with both the normative exponential and descriptive hyperbolic discounting models, which agree on the additive assumption and the independence assumption. We also exculde the integration explanation which assumes subjects integrate upfront money with final rewards and make a decision with bottom line at the end. We consider several possible explanations, including the salience hypothesis, which states that introducing upfront money makes the money dimension more salient than not and thus increases the attractiveness of LL options

    Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform

    Get PDF
    Copyright @ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.National Science Council (NSC) of Taiwan and the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan (which is sponsored by the NSC)

    Poly[[aqua­(μ5-3,4,5,6-tetra­carb­oxy­cyclo­hexane-1,2-dicarboxyl­ato)strontium] monohydrate]

    Get PDF
    In the title compound, {[Sr(C12H10O12)(H2O)]·H2O}n, the SrII ion is coordinated by six O atoms of five symmetry-related 3,4,5,6-tetra­carb­oxy­cyclo­hexane-1,2-dicarboxyl­ate ligands and one water mol­ecule in a slightly distorted monocapped trigonal–prismatic environment. The ligands bridge the SrII ions, forming a two-dimensional structure. In the crystal, O—H⋯O hydrogen bonds further connect the structure into a three-dimensional network. The H atoms of two of the carboxyl groups were refined as half-occupancy

    Data from a comparative proteomic analysis of tumor-derived lung-cancer CD105+ endothelial cells

    Get PDF
    AbstractIncreasing evidence indicates that tumor-derived endothelial cells (TECs) are more relevant for the study of tumor angiogenesis and for screening antiangiogenic drugs than normal ECs (NECs). In this data article, high-purity (>98%) primary CD105+ NECs and TECs purified from a mouse Lewis lung carcinoma model bearing 0.5cm tumors were identified using 2D-PAGE and Matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All the identified proteins were categorized functionally by Gene Ontology (GO) analysis, and gene-pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, protein–protein interaction networks were also built. The proteomics and bioinformatics data presented here provide novel insights into the molecular characteristics and the early modulation of the TEC proteome in the tumor microenvironment

    Preparation of Monolayer MoS\u3csub\u3e2\u3c/sub\u3e Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS\u3csub\u3e2\u3c/sub\u3e Targets in Water

    Get PDF
    Zero-dimensional MoS2 quantum dots (QDs) possess distinct physical and chemical properties, which have garnered them considerable attention and facilitates their use in a broad range of applications. In this study, we prepared monolayer MoS2 QDs using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. The morphology, crystal structures, chemical, and optical properties of the MoS2 QDs were characterized by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–vis absorption spectra, and photoluminescence spectra. The analysis results show that highly pure, uniform, and monolayer MoS2 QDs can be successfully prepared. Moreover, by temporally shaping a conventional single pulse into a two-subpulse train, the production rate of MoS2 nanomaterials (including nanosheets, nanoparticles, and QDs) and the ratio of small size MoS2 QDs can be substantially improved. The underlying mechanism is a combination of multilevel photoexfoliation of monolayer MoS2 and water photoionization–enhanced light absorption. The as-prepared MoS2 QDs exhibit excellent electrocatalytic activity for hydrogen evolution reactions because of the abundant active edge sites, high specific surface area, and excellent electrical conductivity. Thus, this study provides a simple and green alternative strategy for the preparation of monolayer QDs of transition metal dichalcogenides or other layered materials
    • …
    corecore