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1. INTRODUCTION

N Ž .Let � be a bounded domain in R N � 2 with smooth boundary � �
and consider the nonhomogeneous semilinear elliptic problem

��u � � � u p , x � � ,
1.1Ž .u � 0, x � � ,

u � 0, x � � � ,

where � and � are both real parameters and p � 0.
Ž .By a solution of 1.1 we mean, unless specifically stated, a classical

Ž . 1, 2solution which satisfies 1.1 pointwise. Denote H be Sobolev space W0
� � Ž .with the norm � ; if u � H is a solution of 1.1 , let

1 12 p�1� � � � � �I u � u � � u dx � u dxŽ . H H� 2 p � 1� �

denote the energy of u.
Ž . Ž .If p � p � N � 2 � N � 2 , � � 0, and if � is star-shaped, it isN
Ž .well-known that 1.1 has no solution; in this situation the solvability of

Ž .1.1 is closely related to the geometry and topology of the domain; see
	 
5�7 . In this paper, we always suppose that � � 0.

N 	 
If p � p and � � B, the unit ball of R , Ali and Castro 4 haveN
Ž . Ž .shown that there exists a continuous function F: 0, � � 0, � such that

Ž . Ž Ž .. Ž .u is a solution of 1.1 if and only if � � F u 0 . Moreover, lim F dd � 0
Ž . �Ž . Ž .4� 0, lim F d � 0. This tell us that �, u : u satisfies 1.1 is ad ��

� Ž .continuous curve in R � L , one end of the curve is 0, 0 , and another end
� � Ž .tends to the u -axis. So there exists a � � 0 such that 1.1 has at least� 0
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Ž . Žtwo solutions when � � 0, � this multiplicity result had been obtained0
	 
 .by Tarantello 3 earlier .

	 
For the general nonhomogeneous case see 10 .
For p � p , we know that there exists an unbounded branch of theN

Ž . Ž . 	 
 Ž .solution pair �, u of 1.1 by 9 . This branch emanates from 0, 0 . The
� � � �question left open is whether it tends to the u -axis when u � �. This� �

Ž .question is closely related to the uniqueness of the solution of 1.1 for
small �.

	 
On the other hand, Ambrosetti et al. 1 have considered the problem

��u � �uq � u p , x � � ,
1.2Ž .u � 0, x � � ,

u � 0, x � � � ,

where 0 � q � 1, p � 1; they have shown that there exists a constant
Ž . Ž .	 � 0 such that 1.2 has a minimal solution if � � 0, 	 , has no solution

Ž 
 Ž .if � � 	, and has a second solution if p � 1, p , � � 0, 	 . Also, theyN
Ž .have advanced an open problem: Does 1.2 have a second solution when

� � B, the unit ball of R N, p � p , and � � 0 small enough?N
	 
This open problem was answered negatively by Zhao and Zhong 11 ; we

Ž . Ž .proved that all of the solutions u, � of 1.2 tend to the unique singular
Ž � . �solution 
, � as their supremum norm tends to infinity with � � 0,

Ž .hence there is only one minimal solution of 1.2 for � small enough.
Ž .The purpose of the present paper is to study 1.1 when � � 0 and

p � 1. In Lemmas 2.1�2.3 we give some results very similar to Theorems
	 
2.1�2.4 of 1 . Thus a problem similar to the open problem is presented. By

	 
a simple contraction argument as in 2 , we prove that the answer to this
Ž .problem is still negative. Thus, a uniqueness result of 1.1 has been

obtained for � � 0 small enough.
The paper is organized as follows. Section 2 contains some lemmas and

the statements of Theorems 2.1�2.3; in Section 3 we carry out some
preliminary transformation and establish the existence and uniqueness as
well as the asymptotic behavior of the singular solution, proving Theorem
2.1, and finally in Section 4 we prove Theorems 2.2 and 2.3.

2. SOME LEMMAS AND STATEMENTS OF THE RESULTS

	 
As in 1 , by the sub�super solution method, it is easy to obtain the
following lemmas:

LEMMA 2.1. For all p � 1 there exists a constant 	 � 0 such that:

Ž . Ž .1. For all � � 0, 	 Problem 1.1 has a minimal solution u such�

Ž .that I u � 0. Moreo�er, u is increasing with respect to �.� � �
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Ž .2. For � � 	 Problem 1.1 has at least one weak solution u � H �
L p�1.

Ž .3. For all � � 	 Problem 1.1 has no solution.

Remark 2.1. For 0 � p � 1, it is easy to verify that 	 � �.

Remark 2.2. For p � p , there exist at least two solutions for � � 0N
	 
small enough; see 3 .

Ž .LEMMA 2.2. There exists a constant A � 0 such that for all � � 0, 	
Ž . � �Problem 1.1 has at most one solution u such that u � A.�

� �LEMMA 2.3. Let p � p and suppose that � is star-shaped. Then w �N �

Ž .� � as � � 0, where w is any solution of 1.1 distinct from the minimal�

solution u .�

Ž .Now let us consider Problem 1.1 with � � 0 small enough. Lemmas 2.1
and 2.2 tell us that the minimal solution u is a unique solution which�

tends to zero as � tends to zero. So, for p � p , by Lemma 2.3, the twoN
solutions mentioned in Remark 2.2 are the minimal solution u and the�

� �solution w satisfying w � � as � � 0. But, for the case p � p ,�� � N
� � 0 small enough, we do not know whether a second solution exists,

Ž . 	 
even if � � B. This problem corresponds to the open problem a in 1 .
From now on we suppose that p � p and that � � B. By Lemma 2.3,N

we know that if there exists a second solution w , it must hold that�

� �w � � as � � 0, so we shall study the unbounded branch of the��

Ž . Ž . � �solution pair �, u of 1.1 . If the branch is far away from the u -axis as�

�Ž . � � Ž .�, u � �, it seems that 1.1 does not have the second solution; thatR�L
Ž .is, 1.1 may have a unique solution u for � � 0 small enough.�

	 
 Ž .By 8 , any solution of 1.1 will be radially symmetric. This leads us to
use ODE techniques.

From this viewpoint we first introduce the notion of a radial singular
Ž . Ž . Ž .solution of 1.1 . By this we mean a function 
 x which satisfies 1.1 for

x � 0, has radial symmetry, and behaves near the origin as

� ���
 x 	 A x as x � 0, 2.1Ž . Ž .

where A is a constant and � � 0 is a real number.

Ž .Remark 2.3. A simple calculation shows that � must be 2� p � 1 .

By some necessary transformation and a simple contraction argument as
	 
in 2 , we obtain our first main result.

THEOREM 2.1. Suppose that p � p . Then there exists a unique �� �N
Ž 
 Ž . � Ž .0, 	 such that 1.1 with � � � has a radial singular solution 
 x .

Ž . Ž .Moreo�er, 
 x is the unique radial singular solution of 1.1 ; its asymptotic



ZHAO, ZHONG, AND ZHU338

beha�ior near the origin is gi�en by

� ��2�Ž p�1. � � 2
 x � A p , N x 1 � o x as x � 0,Ž . Ž . � 4Ž .

where

Ž .1� p�12 2
A p , N � N � 2 � . 2.2Ž . Ž .ž /p � 1 p � 1

Ž . � �About the asymptotic behavior of solutions �, u as u � �, we prove�

Theorem 2.2 by some ODE techniques, energy analysis and contraction
principle.

�Ž .4 Ž .THEOREM 2.2. Suppose that � , u is a sequence of solutions of 1.1n n
� � �such that u � � as n � �. Then � � � as n � �, and u � 
 as�n n n

n � � uniformly on any compact sets which do not contain the origin. In
1�pŽ . Ž .addition, u � 
 as n � � in L B and in H B .n

Back to our questions, we have a uniqueness result, that is,

THEOREM 2.3. Suppose that p � p . Then there exists some � � 0 suchN 0
Ž . Ž .that for all � � 0, � , 1.1 has only one solution.0

Ž .Remark 2.4. For Problem 1.2 with q � 1, results similar to those for
	 
Theorems 2.1 and 2.2 have been obtained in 2 .

Remark 2.5. Theorem 2.3 offers an interesting contrast to the situation
	 
 	 
 Ž .where p is critical: p � p , in which case, by 3 or 4 , Eq. 1.1 has atN

least two solutions for � � 0 small enough, but by Theorem 2.3, for
Ž .p � p , there is only one minimal solution u for � � 0 small enough.N �

3. SOME TRANSFORMATIONS AND THE
SINGULAR SOLUTION

Let � � B, the unit ball of R N. It is well-known that all solutions of
Ž . 	 
 Ž . � �1.1 are radially symmetric 8 , so we can write u � u r , where r � x ,

Ž .and consider instead of Eq. 1.1 the problem

N � 1� pu � u � � � u � 0, 0 � r � 1,r r rrIŽ .
u � 0, 0 � r � 1,�u 0 � a, u 0 � 0,Ž . Ž .r

Ž .where a � 0 is chosen so that u 1 � 0.
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In view of the asymptotic behavior of the singular solution given in
Theorem 2.1, we introduce the variables

1
�1 2�Ž p�1.t � ln r , y t � A r u r . 3.1Ž . Ž . Ž .

m

Ž .Then for y t we have

� 
 � p mŽ��2. ty � � y � y � y � e � 0, �� � t � 0,
y � 0, �� � t � 0,IIŽ . a

�m � ty 0 � 0, e y t � as t � ��,Ž . Ž .� A

where

2
Ž1�p.�2� � , m � A ,

p � 1

4
2 �1� � m N � 2 � ,  � �m A ,ž /p � 1

Ž .and A has been defined by 2.2 .
Ž .For convenience we sometimes consider II as a first-order system,

y� � z ,
IIIŽ . � p mŽ��2. t½ z � �� z � y � y � e ,

and relate its orbits to those of the associated autonomous system ob-
tained when t � ��,

y� � z ,
IIIŽ . � p0 ½ z � �� z � y � y .

Now we consider the non-autonomous system

� 
 � p mŽ��2. ty � � y � y � y � e � 0, �� � t � 0,y � 0, �� � t � 0,II 3.2Ž . Ž .1 �y 0 � 0, y t � 1 as t � ��.Ž . Ž .

By a shift in t,

ln 
t � � � ,

m � � 2Ž .
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Ž .we may eliminate the eigenvalue  from 3.2 to obtain the problem

� 
 � p mŽ��2.� 3.3Ž .y � � y � y � y � e � 0, �� � � � T , 3.4y � 0, �� � � � T , Ž .IIŽ .2 � 3.5y T � 0, y � � 1 as � � ��, Ž .Ž . Ž .

where

ln 
T � . 3.6Ž .

m � � 2Ž .

Ž . Ž .We now proceed as follows: we first show that any solution y � of 3.3
which converges to 1 as � � �� has a certain asymptotic behavior. We
then show that there exists precisely one such solution, that it can be
continued up to any finite value of � , and finally, that this solution cannot
remain positive for all � � R, so it must have a first zero T. The eigenvalue

� Ž � . Ž . and also � then follows from 3.6 .

Ž . Ž . Ž .LEMMA 3.1. Let y � be a solution of Eq. 3.3 with y � � 1 as
� � ��. Then

mŽ��2.� mŽ��2.�y � � 1 � B p , N e 1 � O e as � � ��,Ž . Ž . Ž .

where

�122B p , N � m � � 2 � m � � 2 � � p � 1 .Ž . Ž . Ž .

Ž . Ž .Proof. Set s � �� and � s � y � � 1. Then � satisfies

�
 � ��� � p � 1 � � f s , �T � s � �,Ž . Ž .

where
p�mŽ��2. sf s � �e � 1 � � � 1 � p� .Ž . Ž .

We distinguish three cases:

� 2 � 2 � 2

a p � 1 � , b p � 1 � , c p � 1 � .Ž . Ž . Ž .
4 4 4

2Ž . Ž . � �'For Cases a and c , let � � p � 1 � � �4 . Using the method of
variation of the constant, we obtain for � the equation

�1
Ž� �2. s �Ž� �2.�� s � e e sin � � � s f � d� . 3.7Ž . Ž . Ž . Ž .H

� s
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Ž .For Case b , we obtain for � the equation

�
Ž� �2. s �Ž� �2.� s � e � � s e f � d� . 3.8Ž . Ž . Ž . Ž .H

s

Ž .Because of the similarity of the arguments, we only discuss Case a .
Ž .Because � s � 0 as s � �, for s large we have

�m Ž��2. s 2f s � e � C� s ,Ž . Ž .
where, and hereafter, C is some general constant. Set

�
Ž� �2. s �Ž� �2.� 2H s � Ce e � � d� .Ž . Ž .H

s

Ž .By 3.7 we have
�m Ž��2. s� s � Ce � H s .Ž . Ž .

� �Ž . � Ž . �Let � s � � s � CH � � d� . A direct calculation shows thats2

d
� Ž s. �mŽ��2. s � Ž s.� H s e � C � s e e .Ž . Ž .Ž .

ds

Ž .Integrating this from s to �, and noting that lim H s � 0, ands��

� � � 0, we obtain

H s � Ce�m Ž��2. s for s large enough.Ž .
Thus, we have

�m Ž��2. s� s � Ce for s large enough. 3.9Ž . Ž .
Ž .By 3.9 , it is easy to obtain

�m Ž��2. s �mŽ��2. sf s � e 1 � O e as s � �. 3.10Ž . Ž . Ž .
Ž . Ž .Substituting 3.10 into 3.7 , we complete the proof of the lemma.

Below we shall use a simple contraction argument to establish the
existence and uniqueness of the singular solution.

Ž � � .LEMMA 3.2. Suppose p � p ; then there exists a unique solution y , N
Ž .of Problem II .1

Ž .Proof. We first transform 3.2 to an integral equation

� s � F � s , 3.11Ž . Ž . Ž . Ž .
in which

�1
Ž� �2. s �Ž� �2.�F � s � �h s � e e sin � � � s g � , � � d�Ž . Ž . Ž . Ž . Ž .Ž .H

� s
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where
p

g s, � � 1 � � � 1 � p� ,Ž . Ž .
h s � B p , N e�m Ž��2. s .Ž . Ž .

Fix S � 0 large enough and let X be the space of continuous functions on
Ž .S, � supplied with the norm

mŽ��2. s� �� � sup e � s : s � S .� 4Ž .
Set

� �� � � � X : � � h � B p , N .� 4Ž .

We assert that, for S large enough, F is a contraction on �. In fact,

p�2 2g s, � � p p � 1 1 � � � , 3.12Ž . Ž . Ž . Ž .
�m Ž��2. s� � � � � � Ž .where � � � . For any � � �, taking note of � � 2 B p, N e ,

we have
�2 mŽ��2. sF � s � h s � Ce ,Ž . Ž . Ž .

Ž .which implies F � � �.
Ž .For any � , � � �, by 3.12 ,1 2

�2 mŽ��2. sF � s � F � s � Ce � s � � s ,Ž . Ž . Ž . Ž . Ž . Ž .2 1 2 1

so
�m Ž��2. s � �F � � F � � Ce � � � .Ž . Ž .2 1 2 1

Ž .Thus, F is a contraction on �. Hence 3.11 has a unique solution in �.
Ž . Ž .That is, II has a unique continuous solution y � when � � �S.2

Ž .Below we show that y � can be continued forward and must vanish at
some T � �.

Ž .From 3.3 we deduce that, as long as y � 0,

y
 � � y� � y � 0. 3.13Ž .
Set

z � y� � qy , 3.14Ž .
where

1 2'q � �� � � � 4 .Ž .2

Ž .Then for z Eq. 3.13 implies that

z� � q � � z ,Ž .
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Ž .from which the boundedness of z on bounded intervals follows. By 3.14
Ž .this means that y is also bounded on bounded intervals, so that y � can

indeed be continued forward as long as it remains nonnegative.
Ž .Suppose that, for all � , y � � 0. Back to the original variables, we

2Ž .obtain a function u � C 0, � satisfying

N � 1� pu � u � � � u � 0, 0 � r � �,r r rr
u � 0, 0 � r � �,�u 0 � 0.Ž .r

It is well known that u � 0, so there exists a constant C � 0 such thatr
Ž . � Ž . � Ž .lim u r � C. Thus u r � C for all r � 0, � . For r large enough,r �� r

N � 1 C
pu r � �� � u r � u r � �� �Ž . Ž . Ž .r r rr r

Ž .holds, so there exists some r � 0 such that for all r � r , u r � 0 holds.0 0 r r
Ž . Ž .Thus u r � u r � 0 for all r � r . This contradicts the fact thatr r 0 0
Ž .lim u r � C. So, there must exist some T such thatr ��

T � sup � � R : y � 0 on ��, � � �� 4Ž .

Ž . Ž .and y T � 0. Thus we obtain a unique solution of II and thereby2
Ž .of II .1

Ž .Proof of Theorem 2.1. From Lemma 3.2 we know that II has a1

Ž � � . Ž . �1 2�Ž p�1. Ž .unique solution y ,  . By the transformation y t � A r u r
Ž .there exists a unique u r satisfying

N � 1

 � � pu � u � � � u � 0, 0 � r � 1,

r
� � Ž 2 �1. Ž . Ž�2.�Ž p�1.where � �  � m A and u r 	 Ar as r � 0. Note that

Ž . � � Ž . Ž � �.T � �; by 3.5 , we obtain  � 0, so � � 0. Substitute 
 x � u x
Ž .into the equation in 1.1 , and let x � 0. We then obtain

� ��2�Ž p�1. � � 2
 x � A x 1 � o x as x � 0,Ž . � 4Ž .
where

Ž .1� p�12 2
A � A p , N � N � 2 � .Ž . ž /p � 1 p � 1

We complete the proof.
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� �4. ASYMPTOTIC ANALYSIS FOR u � ��

� � Ž . Ž .Writing u � u 0 � a, � � 2� p � 1 , we shall study the behavior of�

Ž .u, � as a � �. Set

ln a�AŽ .
� a � . 4.1Ž . Ž .

m�

Ž . Ž .LEMMA 4.1. Let y t, a be a solution of II , then we ha�e

y t , a � em� Ž t�� Ža.. for all �� � t � 0.Ž .

Proof. Multiplying the equation for y by emŽN�2�� . t, we obtain

d
�mŽN�2�� . te y � m� y � 0.Ž .Ž .

dt
mŽN�2�� . tŽ � .Because e y � m� y � 0 as t � ��, the above formula im-

� Ž �m � t .plies that y � m� y � 0 for �� � t � 0, so d e y � 0. Note that
�m � t Ž . m� Ž t�� Ža..ye � a�A as t � ��, so we have y t, a � e for �� � t � 0.

Ž . Ž . Ž . Ž .Set s � t � � a and 
 s, a � y t, a , and then for 
 s, a we have

� 
 � p mŽ��2.Ž s�� Ža..
 � �
 � 
 � 
 � e � 0, �� � s � � ,IV 
 � 0, �� � s � � ,Ž . � �m � s
 � � 0, 
 s e � 1 as s � ��.Ž . Ž .

According to Lemma 4.1, we have


 s, a � em� s , �� � s � 0. 4.2Ž . Ž .

Ž 	 
.It’s easy to obtain the following see 2 .

LEMMA 4.2. Let 
 be the solution of the autonomous problem associated
Ž .with IV , and then


 s, a � 
 s , 
 a, s � 
 s , as a � �,Ž . Ž . Ž . Ž .s s

Ž 
uniformly on half-bounded inter�als ��, S , S � R.

Ž . Ž Ž . Ž .. Ž .By Lemma 4.2, for III we have y t , z t � 1, 0 as a � � along the
Ž .lines t � s � � a , provided S is chosen large enough. Below we shall

Ž . Ž .discuss III by studying its energy function E y, z , defined by

1 1 1
2 2 1�pE y , z � z � y � y .Ž .

2 2 1 � p
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Ž . Ž .We can prove that the orbit y, z remains near 1, 0 until t reaches some
T , which is large and negative but independent of a; that is,

LEMMA 4.3. For e�ery � � 0, there exists a time T � 0 such that, for any�

t � T , holds that0 �

y t , z t � � � y , z : E y , z � E 1, 0 � � .� 4Ž . Ž . Ž . Ž . Ž .Ž .0 0 �

Then,

	 
y t , z t � � for all t � t , T .Ž . Ž .Ž . 2 � 0 �

Ž . Ž 
Now we can give a global bound for y, z on ��, 0 .

LEMMA 4.4. There exists a constant M � 0, which does not depend on a,
such that

y t , z t � M for all t � 0. 4.3Ž . Ž . Ž .Ž .

Proof. From the definition of the energy function E we conclude that
Ž . 2 2 Ž .E y, z � �K � y � 1�2 z for some constant K � 0. Writing E t �
Ž Ž . Ž ..E y t , z t we have

 2
� 2 mŽ��2. t 2 mŽ��2. tE � �� z � e z � e ,

4�

so

 2
t 2 mŽ��2. tE t � E t � e dtŽ . Ž . H0 4� t0

holds for any t � t . Note that t � 0, so we have0

E t � C.Ž .
Therefore

12 2�K � y � z � C.2

This means there is a constant M, independent of a, such that

y , z � M for all t � 0.Ž .

�Ž .4 Ž .Proof of Theorem 2.2. Let u , � be a family of solutions of 1.1n n
Ž . �Ž .4such that u 0 � a � � as n � �. Then y , z is a family of solutionsn n n n
Ž . 2 �1of Problem III with the associated eigenvalue  � m A � . By Lemman n

�Ž .4 Ž 
4.4, y , z is uniformly bounded on ��, 0 , so it has a bound inn n
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2Ž 
 2Ž 
C ��, 0 � C �, 0 . It follows from the Arzela�Ascoli Theorem that we
�Ž .4may extract a subsequence, again denoted by y , z , which converges inn n

2 2Ž . Ž . Ž .C I � C I to some function y, z , where I may be any compact
Ž 
 	 
subset of ��, 0 and � � � � 0, 	 as n � �. By taking the limit inn

Ž . Ž . Ž .III along the subsequence, we find that y, z, � is a solution of III with
2 �1 Ž . �  � m A �, and y 0 � 0. If we have

y t � 1 as t � ��, 4.4Ž . Ž .

Ž . Ž . Ž .then y,  is a solution of II . By Lemma 3.2, II has a unique solution1 1
� � � � �Ž . Ž . Ž . Ž .y ,  , so it must be y,  � y ,  , hence � � � � 0 and y , �n n
Ž � � .� y , � as n � �. Thus, we have

� � �� , y � y� , z � z� as n � �,n n n

Ž 
uniformly on any compact subsets of ��, 0 . Back to their original
variables, hold

u � 
 , �u � �
 , as n � � 4.5Ž .n n

uniformly on any compact subsets which do not contain the origin, where

1�2�Ž p�1. �� � � � � �
 x � 
 x � A p , N x y ln x . 4.6Ž . Ž . Ž . Ž .ž /m

Ž . Ž .To prove 4.4 , we suppose to the contrary that 4.4 does not hold.
� 4There exists a sequence t , such that t � � as k � �, and a constantk k

Ž Ž . Ž ..� � 0 so that y t , z t � � for all k � 1. Choose � � ��4 in Lemmak k �

Ž Ž4.2, then there exist numbers S and n , both large enough that y S �0 n
Ž .. Ž Ž ... Ž Ž . Ž ..� a , z S � � a � � . By Lemma 4.3, it holds that y t , z t �n n n � n n

� � � if n � n . Of course, we may choose n large enough that for2 � � 0
Ž Ž . .some t , t � S � � a , T , where T only depends on � , holds, thusk k n � �0 0

Ž Ž . Ž ..forcing a contradiction to y t , z t � � for all k � 1.k k �
p�1Ž .Now we shall prove that u � 
 as n � � also holds in L B . Inn

fact, by Lemma 4.4, we have

��2�Ž p�1. �Ž2�Ž p�1..�1 
0 � u r � Mr , u r � Mr for all r � 0, 1 ,Ž . Ž . Žn

so

�
p�1 �2ŽŽ p�1.�Ž p�1..�N�1 �� �u � 
 dx � C r dr � C� ,H Hn

B 0�

where

1
N � �� 4� � p N � 2 � N � 2 � 0, B � x � R : x � � .Ž . Ž . �p � 1
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Thus

� � p�1u � 
 dx � 0 as � � 0.H n
B�

By the uniform convergence of u on any compact subsets which do notn
p�1Ž .contain the origin, we obtain u � 
 as n � � holds in L B .n

Ž .From above, we can prove that the conclusion also holds in H B . Thus
we complete the proof.

Ž .Proof of Theorem 2.3. Suppose that for � � 0 small enough, 1.1 has a
� 4solution � different from u , and then there exists a � , � � 0� � n n

� � Žas n � �, such that � � � as n � �. By Theorem 2.2, we have � ,�� nn
. Ž � . �� � � , 
 as n � �, but � � 0, a contradiction! This completes�n

the proof.
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