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Increasing evidence indicates that tumor-derived endothelial cells
(TECs) are more relevant for the study of tumor angiogenesis and
for screening antiangiogenic drugs than normal ECs (NECs). In this
data article, high-purity (498%) primary CD105þ NECs and TECs
purified from a mouse Lewis lung carcinoma model bearing 0.5 cm
tumors were identified using 2D-PAGE and Matrix-assisted laser
desorption/ionization tandem mass spectrometry (MALDI-MS/
MS). All the identified proteins were categorized functionally by
Gene Ontology (GO) analysis, and gene-pathway annotated by
Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, pro-
tein–protein interaction networks were also built. The proteomics
and bioinformatics data presented here provide novel insights into
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the molecular characteristics and the early modulation of the TEC
proteome in the tumor microenvironment.
& 2016 Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Biology

ore specific sub-
ject area
Tumor microenvironment
ype of data
 Table, figure

ow data was
acquired
Mass spectroscopy, data acquired using 4800 Plus MALDI TOF/TOF™ Analyzer
ata format
 Analyzed

xperimental
factors
Primary CD105þ NECs and TECs were isolated and purified from a mouse Lewis
lung carcinoma model bearing 0.5 cm tumors
xperimental
features
The proteins were separated using 2D-PAGE, in-gel digested and analyzed using
MALDI TOF/TOF
ata source
location
Xiamen, Fujian, China
ata accessibility
 The data is available with this article
D

Value of the data

� Highly optimized method for primary ECs proteomic analysis by 2D-PAGE from tumor tissues.
� Bioinformatics data can be useful for clarified the heterogeneity of tumor derived ECs.
� The differentially expressed proteins indicate the potential function of the TEC in tumor

microenvironment.
1. Data

The data is related to the identification and verification of transgelin-2 as a potential biomarker of
tumor-derived lung-cancer endothelial cells by comparative proteomics [1]. A highly optimized
method for primary CD105þ NECs and TECs proteomic analysis by 2D-PAGE and MALDI-MS/MS was
presented here. All the identified proteins were categorized by GO, KEGG and protein–protein
interaction analysis, to clarify the function of TEC in tumor microenvironment.
2. Experiment design, materials and methods

Primary CD105þ NECs and TECs were isolated from a mouse Lewis lung carcinoma model bearing
0.5 cm tumors. Differentially expressed proteins were identified using 2D-PAGE and Matrix-assisted
laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). 2D-PAGE was performed
using the GE Ettan™ IPGphor™ 3 and DALTsix system. Proteins were visualized by silver staining, and
images were recorded on a GE ImageScanner III system and analyzed with the ImageMaster 2D
Platinum software. Mass spectrometry data were obtained in an automated analysis loop using a
4800 Plus MALDI TOF/TOF™ Analyzer (Applied Biosystems, USA), and collected using the 4000 Series
Explorer™ software and submitted to database search via GPS Explorer™ (Applied Biosystems).
MASCOT Server version 2.2 and NCBI non-redundant database were used for protein identification. A
total of 63 spots resulted in the identification of 48 unique proteins (28 up- and 20 down-regulated
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proteins) were detected by at least 1.5-fold changes in TECs. All the identified proteins were cate-
gorized functionally by Gene Ontology (GO) analysis. Gene-pathway annotations were compiled from
Kyoto Encyclopedia of Genes and Genomes (KEGG), BioCarta, BioCyc, and Reactome. Protein–protein
interaction networks were built using the DIP, MINI, BioGRID, IntAct, and STRING databases, and the
data were imported into Cytoscape in order to visualize the graphs.
3. Establishment of ECs cultures

Primary ECs were purified by combining the enzymatic digestion, differential adherence and
magnetic cell-sorting using a CD105 MultiSort Kit, according to the procedure described in the Journal
of Proteomics paper [1]. Endothelial phenotype and purity were confirmed by cytofluorimetric ana-
lysis on the basis of positive expression of a panel of endothelial markers [2,3], and isotype control
stainings were shown in Fig. 1. ECs (CD105 expression of 498%) at first passage were used for the
proteomic analysis to maintain the most properties of the in vivo state [4].
4. Comparative proteomic analysis of NECs and TECs

NECs and TECs were harvested and suspended in lysis buffer containing 7 M urea, 4% CHAPS, 2 M
thiourea, 60 mM DTT, 10 mM Tris, 1 mM EDTA, 0.002% bromophenol blue, and 2% ampholine (pH 3–
10) [5]. Cells were disrupted on ice by five 15 s pulses of sonication, followed by five cycles of freeze-
thaw: 5 min in liquid nitrogen, 1 min in a 37 °C water bath and 3 min at room temperature. Then,
supernatant fractions were collected after centrifugation at 14,000� g for 40 min at 4 °C and then
Fig. 1. Non-specific staining of endothelial cells was evaluated using isotype controls (rat IgG or rabbit IgG) and matched Alexa
Fluors 555-conjugated secondary antibodies by flow cytometry.
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stored at �80 °C. Protein concentration was determined using a Bradford assay kit. A non-linear pH
gradient of 3–10 was chosen for isoelectric focusing (IEF). The second-dimension was performed on a
12.5% SDS-PAGE to optimize the separation of proteins from 12 to 97 kDa. Before IEF, a solution
containing 50 mM MgCl2, 1 mg/mL DNase 1, and 0.25 mg/mL RNase A was added to the protein
samples at ratio of 1:20 (V/V). Aliquots containing 100 μg of protein were resuspended in 250 μL of
rehydration solution. Equal amount of sample was loaded in triplicate. After 18 h of rehydration of the
IPG strips (GE Healthcare, USA), IEF was performed using the GE Ettan™ IPGphor™ 3 system at
67,860 V �h. After focusing, the strips were first equilibrated for 15 min in a buffer containing 6 M
urea, 20% glycerol, 2%SDS, 2% DTT, and then for 15 min in the same buffer containing 2.5% iodoace-
tamide instead of DTT. SDS-PAGE was performed on a GE Ettan™ DALTsix system. Finally, the proteins
were visualized by silver staining. Briefly, gels were soaked in fix solution (50% ethanol, 10% acetic
acid) for at least 45 min, rinsed in 30% ethanol and ddw for 3�10 min, respectively. To sensitize, gels
were soaked in sensitivity enhancing solution (2 mL of 10% sodium thiosulfate solution per liter) for
2 min (one gel at a time), followed by rinsed in ddw for 2�1 min. For silver reaction, submerged gel
in 0.1% silver stain solution [0.1% silver nitrate with 0.08% formalin (37%)] for 20 min, followed by
Fig. 2. Relative levels of signal intensity in TECs and NECs.



Table 1
Cancer proteomic identifications used for comparison.

Symbol Protein identified Reference

Tagln2 Transgelin-2 [7,8]
Hspd1 Heat shock protein 1 [9–11]
Pgam1 Phosphoglycerate mutase 1 [9,12]
Dld Dihydrolipoyl dehydrogenase [13]
Cct2 Chaperonin containing Tcp1, subunit 2 (beta) [14,15]
Npm1 Nucleophosmin [7]
Arhgdia Rho GDP dissociation inhibitor (GDI) alpha [16]
Gdi2 Rab GDP dissociation inhibitor beta [8]
Aprt Adenine phosphoribosyl transferase [17]
Park7 Parkinson disease7 [18]
Acy1 Aminoacylase-1 [10]
Capzb Capping protein (actin filament) muscle Z-line, beta [7]
Ctsb Cathepsin B [19]
Hnrnpk Heterogeneous nuclear ribonucleoprotein K [15]
Vcp Transitional endoplasmic reticulum ATPase [20]
Enol Enolase 1, alpha non-neuron [10,12,21,22]
Pkm2 Pyruvate kinase isozymes M2 [23]
Pcna Proliferating cell nuclear antigen [3,24]
Pgk1 Phosphoglycerate kinase 1 [25]
Map2k1 Mitogen-activated protein kinase kinase 1 [26]

Table 2
Primers for real-time RT-PCR amplification.

No. Gene Symbol Primer sequence (50 to 30)

1 GAPDH Forward: ctgcgacttcaacagcaact Reverse: gagttgggatagggcctctc
2 HSPD1 Forward: tagctgttacaatggggcca Reverse: ggcaacgtcctgaacaagtt
3 HSPA5 Forward: ccccaactggtgaagaggat Reverse: ccccaagacatgtgagcaac
4 AHSA1 Forward: tcaccggggagtttactgac Reverse: tcaaagtagtaccgctgcca
5 APRT Forward: agcgtgctgatacctacctc Reverse: aggagtccgggtctttcaag
6 ANXA3 Forward: tcaagcaggcagatgaagga Reverse: tggccagatgttcatccact
7 CNN2 Forward: tctatgcagaactggcacca Reverse: gcgtcgtcaaagttcctctc
8 HSP90B1 Forward: agtcgggaagcaacagagaa Reverse: tctccatgttgccagaccat
9 CAPZB Forward: gccgtactgcccattacaag Reverse: atgttggctatgtgtgggga

10 HSPA8 Forward: tctaagggacctgcagttgg Reverse: ttgcaacctgattcttggcc
11 ST13 Forward: aggaagcagctcatgacctt Reverse: tcgagccttcttcacccttt
12 NPM1 Forward: tgtttccggatgactgacca Reverse: cttggcaagtgaacctggac
13 PRDX1 Forward: aagagcaacggggttcctaa Reverse: ggccagcctagtctacagag
14 PGK1 Forward: gatgcttttgggactgcaca Reverse: tcagctggatcttgtctgca
15 PGAM1 Forward: catcatggagctgaacctgc Reverse: tcgccttcacttcttcacct
16 PCNA Forward: gtggagcaacttggaatccc Reverse: ggttaccgcctcctcttctt
17 PARK7 Forward: ggagcagaggagatggagac Reverse: tctgtgcacccagatttcct
18 PKM1 Forward: ctggaatgaatgtggctcgg Reverse: taagcgttgtccagggtgat
19 STMN1 Forward: attctcagccctcggtcaaa Reverse: gagctgcttcaagacttccg
20 CCT2 Forward: cgctgtggatcatggttctg Reverse: gccagactcccacctagttt
21 TAGLN2 Forward: ctcttcgatggccttcaagc Reverse: cgagaagttccgagggttct
22 VIM Forward: cgctttgccaactacatcga Reverse: cctcctgcaatttctctcgc
23 ATP5α1 Forward: gagagcagccaagatgaacg Reverse: gacacgggacacagacaaac
24 ACTG1 Forward: ccctatcgaacacggcattg Reverse: cctgaatggccacgtacatg
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rinsed in ddw for 2�1 min. Developed image in development solution [2% sodium carbonate with
0.04% formalin (37%)] until desired intensity of staining occur, then quickly washed in 5% acetic acid
for 10 min, and rinsed in ddw for 5 min to stop the staining. Finally, all gels were rinsed with water
(several changes) prior to drying or densitometry.



Fig. 3. Verification of differentially expressed proteins by real-time RT-PCR of 23 selected transcripts (A) and analysis of
functional distribution of proteomically identified endothelial proteins involved in cellular components (B), biological processes
(C), and molecular function (D) (based on the Human Protein Reference Database).
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Images were recorded on a GE ImageScanner III system. The gels were analyzed with the Ima-
geMaster 2D Platinum software, and automatic spot matching in conjunction with detailed manual
checking of the spot finding, to identify proteins in both the NECs and TECs. The quality of the gels
was verified by using the quality control of the software. Spot intensities were expressed as the
percentage of the integrated spot density (volume) over the total density of all measured spots.
Significantly over-abundant spots were detected at a significance level of 5% and a fold number of
41.5. After statistical analysis, 63 spots were identified in TECs, compared with NECs, and the his-
tograms in Fig. 2 show the relative levels of signal intensity. The histograms contain information
about spot ID, spot intensity, relative ratio, and statistical result of triplicate repeats. Spots that were
differentially expressed between NECs and TECs were then isolated and identified using mass spec-
trometry as described below.

Gels were analyzed with the ImageMaster 2D Platinum software. The quality of the gels was
verified by using the quality control of the software. Spot intensities were expressed as the percen-
tage of the integrated spot density (volume) over the total density of all measured spots. Significantly
over-abundant spots were detected at a significance level of 5% (p-value o 0.05%) and a fold number
of 41.5.

Differentially expressed protein spots were picked manually and enzymatic digestion in-gel was
carried out according to the procedure of Zimmerman et al. with some modifications [6]. Briefly, dried
gel pieces were incubated with 10 μL of 25 μg/mL sequencing-grade trypsin (Promega) in 40 mM
ammonium bicarbonate for 30 min at 4 °C. Then another 20 μL of 40 mM ammonium bicarbonate was



Fig. 4. List of the top 10 gene ontology (GO; A), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (B) and protein–
protein interaction networks for differentially expressed proteins in TECs. Proteins were uploaded into the Ingenuity Pathway
analysis (IPA) software server. The network was built using the STRING (http://string-db.org/) database, and the data were
imported into Cytoscape (www.cytoscape.org) for visualization.
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added to ensure complete cover of the pieces. Digestion was carried out at 37 °C for 12 h and peptides
were recovered by sequencing extractions with 25 mM ammonium bicarbonate, 50% ACN/0.1% TFA,
and 100% ACN, and all steps were repeated once more.
5. Database searching

MALDI-MS/MS data were obtained in an automated analysis loop using a 4800 Plus MALDI TOF/
TOF™ Analyzer (Applied Biosystems, USA). Digested peptides were desalted using C18 ZipTipss

(Millipore, USA). MS and MS/MS spectra were collected using the 4000 Series Explorer™ software
and submitted to database search via GPS Explorer™ (Applied Biosystems). MASCOT Server version
2.2 (Matrix Science, London, UK) and the NCBI non-redundant database were used for protein
identification. The search parameters were set as follows: taxonomy: Mouse; mass values, mono-
isotopic; precursor mass tolerance, 71 Da; fragment mass tolerance, 70.3 Da; enzyme, trypsin;
maximum missed cleavage allowed, 1; modifications, carbamidomethyl Cys (permanent); methionine

http://string-db.org/
http://www.cytoscape.org


Table 3
The top 10 differentially expressed proteins sorted by network betweeness.

Protein Degree Betweenness Gene Ontology KEGG Pathway

Vim 29 0.0828 (GO:1900147) regulation of Schwann cell migration; (GO:0045103) intermediate
filament-based process

Aprt 17 0.0601 (GO:0006166) purine ribonucleoside salvage; (GO:0006168) adenine salvage (00230) Purine metabolism; (01100) Metabolism
Hspd1 29 0.0490 (GO:0002842) positive regulation of T cell mediated immune response to tumor

cell; (GO:0043065) positive regulation of apoptotic process; (GO:0043066)
negative regulation of apoptotic process

(03018) RNA degradation; (04940) Type I diabetes mellitus

Pgam1 28 0.0398 (GO:0006096) glycolysis; (GO:0006110) regulation of glycolysis; (GO:0008152)
metabolic process; (GO:0043456) regulation of pentose- phosphate shunt;
(GO:0045730) respiratory burst

(00010) Glycolysis/Gluconeogenesis; (01100) Metabolism

Pkm2 28 0.0375 (GO:0001889) liver development; (GO:0008152) metabolic process;
(GO:0031100) organ regeneration;

(00010) Glycolysis/Gluconeogenesis; (00230) Purine metabo-
lism;(00620) Pyruvate metabolism;(01100) Metabolism;(04930)
Type II diabetes mellitus

Pgk1 29 0.0353 (GO:0005975) carbohydrate metabolic process;(GO:0006094) gluconeogenesis;
(GO:0006096) glycolysis;(GO:0016310) phosphorylation

(00010) Glycolysis/ Gluconeogenesis; (01100) Metabolism

Prdx1 25 0.0306 (GO:0008283) cell proliferation; (GO:0019430) removal of superoxide radicals;
(GO:0034101) erythrocyte homeostasis

(04146) Peroxisome

Pcna 28 0.0285 (GO:0000122) negative regulation of transcription from RNA polymerase II pro-
moter;(GO:0006260) DNA replication

(03030) DNA replication;(03410) Base excision repair;(03420)
Nucleotide excision repair;(03430) Mismatch repair;(04110) Cell
cycle

Cct2 27 0.0277 (GO:0006457) protein folding; (GO:0007339) binding of sperm to zona pellucida;
(GO:0044267) cellular protein metabolic process; (GO:0051131) chaperone-
mediated protein complex assembly

Tagln2 15 0.0248 (GO:0007517) muscle organ development
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Table 4
Clinical data of lung cancer patients used in the immunohistochemical analysis.

No. Gender Age
(years)

History of
smoking

Histological
grade

Lymph node
metastasis

Tumor size Type
1

Type
2

TMN
staging

1 M 47 Y M N 5.2�2.4�2.0 A P T2N2M0
2 M 29 N H N 0.6�0.5�0.4 A C T1NOM0
3 M 62 Y M N 9.5�8.4�4.7 S C T3N0M0
4 M 56 N H N 2.3�2.7�1.6 A P T2N0M0
5 M 56 Y L Y 2.1�1.5�1.3 A P T4N2M1
6 M 56 Y M N 7.0�6.5�5.0 S C T2N2M0
7 M 54 Y H Y 3.0�1.5�0.7 S C T2N3M0
8 M 70 Y M N 7.5�7.3�6.0 S C T3N0M0
9 M 59 Y M N 1.8�1.8�0.7 A P T2N0M0

10 F 61 N M N 1.8�1.6�1.2 A P T2N0M0
11 M 66 Y M N 1.5�1.0�0.6 S P T1N0M0
12 F 62 N L Y 5.5�3.5�2.5 S P T2N2M0
13 M 59 Y M Y 6.5�6.0�5.0 S C T4N2M0
14 M 65 Y M N 3.8�2.4�2.0 S C T2N0M0
15 F 47 N M N 2.5�1.5�1.4 A P T2N0M0
16 F 62 N M Y 2.7�2.7�1.6 A P T2N2M0
17 M 68 Y M N 8.5�5.8�5.1 S C T3N0M0
18 M 69 Y L Y 2.2�2.2�1.2 A P T2N2M0
19 M 64 Y M N 3.5�2.5�0.8 S C T2N0M0
20 M 68 Y L N 8.0�8.0�7.0 A P T3N0M0
21 M 66 Y M N 5.5�5.0�4.0 A P T2N0M0
22 M 49 Y L Y 1.5�1.4�1.4 A P T1N1M0
23 M 65 Y M N 1.3�1.0�0.7 P A T1N0M0
24 F 49 N M N 1.7�1.4�1.4 A P T2N0M0
25 M 55 Y M N 4.5�4.0�3.0 A P T2N0M0
26 M 57 Y M N 0.5�0.5�0.4 S C T1N0M0
27 M 48 Y H N 0.7�0.5�0.3 A C T1N0M0
28 M 56 Y M N 2.0�1.5�1.3 A P T2N0M0
29 F 51 N M N 1.6�1.4�1.4 A P T1N0M0
30 M 78 N M N 2.6�2.2�1.7 A P T2N0M0

Note: Gender: M¼male, F¼female; History of smoking: Y¼yes, N¼no; Histological grade: H¼highly differentiated,
M¼moderately differentiated, L¼ low differentiation; Lymph node metastasis: Y¼yes, N¼no; Type 1: S¼squamous cell car-
cinoma, A¼adenocarcinoma; Type 2: P¼peripheral type, C¼central type.
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oxidation (variable); Ser, Thr, and Tyr phosphorylation. Results were scored using the probability-
based MASCOT score. Among these identified proteins, many have been identified in previous cancer
studies, including Tagln2, Hspd1, Pgam1, Dld, Cct2, Npm1, Arhgdia, Gdi2, Aprt, Park7, Acy1, Capzb,
Ctsb, Hnrnpk, Vcp, Enol, Pkm2, Pcna, Pgk1, and Map2k1, which are list in Table 1. For these candidate
biomarkers, our results are in agreement with published data.
6. Real-time PCR analysis of selected proteins

On the basis of GO annotations (20 proteins, including in the top 10 GO BP terms) and protein–
protein interaction analysis results (3 proteins), the mRNA levels of 23 differentially expressed pro-
teins were analyzed by real-time RT-PCR. Total RNA was extracted using TRIzol. RT-PCR analysis was
performed by using the SYBR

s

Green I RT-PCR Master Mix kit from Bio-Rad Laboratories, Inc. on a
Rotor-Gene 3000 system. The relative mRNA levels of differentially expressed proteins were nor-
malized to that of GAPDH, and NECs were used for calibration. Primers for selected proteins are listed
in Table 2. Measurement of △Ct was performed in triplicate. RT-PCR data were analyzed for relative
gene expression using the △△Ct method. The results of the RT-PCR analysis were mostly consistent
with those obtained in the 2D-PAGE analysis (see Fig. 3A).



Table 5
Clinical data of lung cancer patients used in the ELISA analysis.

No. Gender Age
(years)

History of
smoking

Histological
grade

Lymph node
metastasis

Tumor size Stage Type
1

Type
2

Visceral pleura
metastasis

Macrovascular
invasion

Nerve
infiltration

1 M 61 N M N 3.0�1.3�1.0 I A C Y N N
2 M 73 N M N 12.0�10.0�5.0 II S P N N N
3 M 57 Y M Y 2.5�2.5�2.0 III A P Y N N
4 F 57 N L Y 1.2�1.0�0.6 III S P N N N
5 F 61 N M N 2.0�1.8�1.5 III A P N Y N
6 M 49 Y M N 3.5�2.8�2.0 I S P N N N
7 M 58 Y L Y 6.0�5.0�2.0 III S C N N Y
8 M 56 Y M Y 2.5�2.0�2.0 I A P Y Y Y
9 F 51 N M Y 3.6�2.6�1.8 III A P Y N N

10 M 49 Y L N 4.0�3.5�3.0 I S P N N N
11 M 66 Y M Y 3.0�2.6�2.3 I S C N Y Y
12 M 64 Y M Y 4.5�4.0�4.0 III S P Y Y Y
13 M 68 Y M N 8.5�6.8�5.0 II A P Y N N
14 M 71 Y M Y 7.0�6.0�3.0 III S P Y Y N
15 M 72 Y M N 2.2�2.0�0.8 I S P Y N Y
16 F 71 N M Y 7.0�6.0�3.3 III S C N N N
17 M 53 Y L N 2.5�2.0�2.0 I A P Y N N
18 M 52 Y M Y 4.0�2.5�2.0 III S C N Y Y
19 F 74 N M N 1.0�0.3�0.1 I A P N N N
20 M 59 Y L Y 7.5�5.0�4.0 III S C Y N Y
21 M 58 Y M Y 2.3�2.0�1.3 I A P N N N
22 F 58 N H N 2.5�2.5�2.0 I A P Y N Y
23 M 58 Y L N 4.0�3.0�2.5 I S C N N Y
24 M 72 Y M Y 5.5�3.5�3.0 III S C N Y Y
25 M 61 N M Y 5.1�3.2�2.2 III A P Y Y Y
26 F 61 N M N 1.8�1.6�1.2 I A P Y N N
27 M 54 Y M Y 3.0�1.5�0.7 III S C N Y N
28 M 59 Y M N 1.8�1.8�0.7 I A P Y N N
29 F 64 N M N 2.2�1.7�1.5 I A P Y N N
30 M 70 Y M N 7.5�7.3�6.0 II S P Y N Y
31 M 66 Y L N 1.5�1.0�0.6 I S P N N N
32 M 79 Y M N 3.5�3.3�1.6 I P N N N
33 M 73 Y L N 5.6�4.8�4.2 III A P N N Y
34 F 51 N H N 1.1�0.7�0.5 I P N N N
35 M 68 Y M N 8.5�5.8�5.1 II S C N N Y
36 M 65 Y M N 3.8�2.4�2.0 I S C N N N
37 M 69 Y L Y 2.2�2.2�1.2 III A P Y Y N
38 M 64 Y M N 3.5�2.5�0.8 I S C N N N
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39 M 63 Y M N 4.6�3.5�3.3 I S C N N Y
40 M 54 N M Y 2.2�1.9�1.1 II A P N Y Y
41 M 58 Y L N 6.6�4.4�4.2 II S C N N Y
42 F 53 N L N 2.2�1.6�1.5 I A P Y N Y
43 M 48 Y M N 0.7�0.5�0.3 I A C N N N
44 M 72 N M Y 3.0�2.0�0.8 III A C N N N
45 M 58 Y M Y 5.0�3.5�3.0 III S C N Y Y
46 M 60 Y M Y 9.3�8.3�5.3 III A P Y N N
47 M 63 Y L N 7.0�5.8�5.2 II A P Y N N
48 M 59 Y L Y 5.0�4.5�4.0 III S C Y N Y
49 F 69 N M N 2.5�2.0�1.7 I A P N N N
50 M 65 Y M N 1.3�1.0�0.7 I A P N N N
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7. Bioinformatics analysis of the identified proteins

To get a precise prediction, multiple bioinformatics methods were performed. First, the mouse
genes thus identified were associated with their putative human orthologs using NCBI's HomoloGene
resource. Homogene annotations were downloaded from “ftp://ftp.ncbi.nih.gov/pub/HomoloGene/
build67/homologene.data.” Then, the molecular functions of the all identified proteins were assigned
on the basis of a search against the Human Protein Reference Database (HPRD, HPRD_Re-
lease9_041310.tar.gz). Results including biological process, cellular component, and molecular func-
tion were shown in Fig. 3B–D.

Second, all the identified proteins were categorized functionally by GO analysis. GO was down-
loaded from the GeneOntology website (geneontology.org/ontology/ geneontology_edit.obo). Corre-
sponding mouse GO-gene annotations were downloaded from the NCBI Entrez Gene ftp website
(ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz). The GO analysis results, including the biological pro-
cess (BP), cellular component (CC), and molecular function (MF), were generated. Gene set enrich-
ment analysis revealed that all the differentially expressed proteins were enriched in 99 GO terms
(po0.05), including 58 BP, 23 MF and 18 CC. The top 10 GO terms ranked according to their sig-
nificance level were listed in Fig. 4A.

Third, gene-pathway annotations were compiled from Kyoto Encyclopedia of Genes and Genomes
(KEGG), BioCarta (http://www.biocarta.com/), BioCyc, and Reactome. A hypergeometric test was
chosen for statistical analysis, and significantly enriched pathways were identified at a corrected p-
value of o0.05. Results were listed in Fig. 4B.

Forth, protein–protein interaction networks were built using the Database of Interacting Proteins
(DIP), Molecular Interaction (MINI), Database of Protein and Genetic Interaction (BioGRID), IntAct
molecular interaction (IntAct), and STRING (http://string-db.org/) databases, and the data were
imported into Cytoscape in order to visualize the graphs. The graphs was shown in Fig. 4C, and the
details of top 10 proteins were listed in Table 3, including the degree, betweenness, gene ontology,
and KEGG pathway.
8. Verification of candidate proteins in clinical samples

Lung squamous cell carcinoma specimens from 30 patients (11 lung squamous cell carcinoma and
19 adenocarcinoma) were chosen for IHC analysis. Histopathology reports were also obtained along
with the samples, and shown in Table 4. Serum samples from 54 LC patients, 31 colorectal cancer
patients, 31 esophageal cancer patients, and 84 normal individuals were used for the ELISA analysis.
The clinical data of the LC patients are presented in Table 5.
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