91 research outputs found

    Spectra of GRB 970228 from the Transient Gamma-Ray Spectrometer

    Get PDF
    Visible afterglow counterparts have now been detected for two GRBs (970228 and 970508) but are absent, with Lopt/LÎłL_{opt}/L_{\gamma} ratios at least two orders of magnitude lower, for other GRBs, e.g., 970828. The causes of this variation are unknown. Any correspondence which could be discovered between the gamma-ray properties of a GRB and its Lopt/LÎłL_{opt}/L_{\gamma} would be useful, both in determining the GRB mechanisms, and in allocating resources for counterpart searches and studies. This paper presents the gamma-ray spectra of GRB 970228 as measured by the Transient Gamma-Ray Spectrometer and comments on characteristics of this GRB compared to others that do and do not have observable counterparts.Comment: To appear in "Gamma-Ray Bursts", Proceedings of the 4th Huntsville Symposium, 1997, eds. C. Meegan, R. Preece, and T. Koshut, 5 pages, LaTeX (aipproc.sty incl.), 3 figs. (epsfig.sty

    TGRS Observation of the Galactic Center Annihilation Line

    Get PDF
    The TGRS (Transient Gamma-Ray Spectrometer) experiment is a high-resolution germanium detector launched on the WIND satellite on Nov. 1, 1994. Although primarily intended to study gamma-ray bursts and solar flares, TGRS also has the capability of studying slower transients (e.g. x-ray novae) and certain steady sources. We present here results on the narrow 511 keV annihilation line from the general direction of the Galactic Center accumulated over the period Jan. 1995 through Oct. 1995. These results were obtained from the TGRS occultation mode, in which a lead absorber occults the Galactic Center region for 1/4 of each spacecraft rotation, thus chopping the 511 keV signal. The occulted region is a band in the sky of width 16 degrees that passes through the Galactic Center. We detect the narrow annihilation line from the galactic center with flux = (1.64±0.09)×10−3photonscm−2s−1(1.64\pm0.09)\times10^{-3} {photons} {cm}^{-2} {s}^{-1}. The data are consistent with a single point source at the galactic center, but a distributed source of extent up to ~30 degrees cannot be ruled out. No evidence for temporal variability on time scales longer than 1 month was found.Comment: 11 pages + 5 Postscript figure

    Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    Get PDF
    International audienceDuring casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements

    The serotonin receptor 3E variant is a risk factor for female IBS-D

    Get PDF
    Irritable bowel syndrome (IBS) is a gut-brain disorder of multifactorial origin. Evidence of disturbed serotonergic function in IBS accumulated for the 5-HT3 receptor family. 5-HT3Rs are encoded by HTR3 genes and control GI function, and peristalsis and secretion, in particular. Moreover, 5-HT3R antagonists are beneficial in the treatment of diarrhea predominant IBS (IBS-D). We previously reported on functionally relevant SNPs in HTR3A c.-42C > T (rs1062613), HTR3C p.N163K (rs6766410), and HTR3E c.*76G > A (rs56109847 = rs62625044) being associated with IBS-D, and the HTR3B variant p.Y129S (rs1176744) was also described within the context of IBS. We performed a multi-center study to validate previous results and provide further evidence for the relevance of HTR3 genes in IBS pathogenesis. Therefore, genotype data of 2682 IBS patients and 9650 controls from 14 cohorts (Chile, Germany (2), Greece, Ireland, Spain, Sweden (2), the UK (3), and the USA (3)) were taken into account. Subsequent meta-analysis confirmed HTR3E c.*76G > A (rs56109847 = rs62625044) to be associated with female IBS-D (OR = 1.58; 95% CI (1.18, 2.12)). Complementary expression studies of four GI regions (jejunum, ileum, colon, sigmoid colon) of 66 IBS patients and 42 controls revealed only HTR3E to be robustly expressed. On top, HTR3E transcript levels were significantly reduced in the sigma of IBS patients (p = 0.0187); more specifically, in those diagnosed with IBS-D (p = 0.0145). In conclusion, meta-analysis confirmed rs56109847 = rs62625044 as a risk factor for female IBS-D. Expression analysis revealed reduced HTR3E levels in the sigmoid colon of IBS-D patients, which underlines the relevance of HTR3E in the pathogenesis of IBS-D

    The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome

    Get PDF
    Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis
    • 

    corecore