3,772 research outputs found
Unimpaired Neuropsychological Performance and Enhanced Memory Recall in Patients with Sbma: A Large Sample Comparative Study.
Peculiar cognitive profile of patients with SBMA has been described by fragmented literature. Our retrospective study reports the neuropsychological evaluations of a large cohort of patients in order to contribute towards the understanding of this field. We consider 64 neuropsychological evaluations assessing mnesic, linguistic and executive functions collected from 2013 to 2015 in patients attending at Motor Neuron Disease Centre of University of Padova. The battery consisted in: Digit Span forwards and backwards, Prose Memory test, Phonemic Verbal fluency and Trail making tests. ANCOVA statistics were employed to compare tests scores results with those obtained from a sample of healthy control subjects. Multiple linear regressions were used to study the effect on cognitive performance of CAG-repeat expansion, the degree of androgen insensitivity and their interaction to cognitive performance. Statistical analyses did not reveal altered scores in any neuropsychological tests among those adopted. Interestingly, patients performed significantly better in the Prose Memory test's score. No relevant associations were found with genetic, hormonal or clinical patients' profile. Results inconsistent with previous studies have been interpreted according to the phenomenon of somatic mosaicism. We suggest a testosterone-related and the mood state-dependant perspectives as two possible interpretations of the enhanced performances in the Prose Memory test. Further studies employing more datailed tests batteries are encouraged
Coupling between reconnection and Kelvin-Helmholtz instabilities in collisionless plasmas
In a collisionless plasma, when reconnection instability takes place, strong shear flows may develop. Under appropriate conditions these shear flows become unstable to the Kelvin-Helmholtz instability. Here, we investigate the coupling between these instabilities in the framework of a four-field model. Firstly, we recover the known results in the low β limit, β being the ratio between the plasma and the magnetic pressure. We concentrate our attention on the dynamical evolution of the current density and vorticity sheets which evolve coupled together according to a laminar or a turbulent regime. A three-dimensional extension in this limit is also discussed. Secondly, we consider finite values of the β parameter, allowing for compression of the magnetic and velocity fields along the ignorable direction. We find that the current density and vorticity sheets now evolve separately. The Kelvin-Helmholtz instability involves only the vorticity field, which ends up in a turbulent regime, while the current density maintains a laminar structure
Ethical difficulties in clinical practice : experiences of European doctors
Background: Ethics support services are growing in Europe to help doctors in dealing with ethical difficulties.
Currently, insufficient attention has been focused on the experiences of doctors who have faced ethical
difficulties in these countries to provide an evidence base for the development of these services.
Methods: A survey instrument was adapted to explore the types of ethical dilemma faced by European
doctors, how they ranked the difficulty of these dilemmas, their satisfaction with the resolution of a recent
ethically difficult case and the types of help they would consider useful. The questionnaire was translated and
given to general internists in Norway, Switzerland, Italy and the UK.
Results: Survey respondents (n = 656, response rate 43%) ranged in age from 28 to 82 years, and averaged
25 years in practice. Only a minority (17.6%) reported having access to ethics consultation in individual
cases. The ethical difficulties most often reported as being encountered were uncertain or impaired decisionmaking
capacity (94.8%), disagreement among caregivers (81.2%) and limitation of treatment at the end of
life (79.3%). The frequency of most ethical difficulties varied among countries, as did the type of issue
considered most difficult. The types of help most often identified as potentially useful were professional
reassurance about the decision being correct (47.5%), someone capable of providing specific advice
(41.1%), help in weighing outcomes (36%) and clarification of the issues (35.9%). Few of the types of help
expected to be useful varied among countries.
Conclusion: Cultural differences may indeed influence how doctors perceive ethical difficulties. The type of
help needed, however, did not vary markedly. The general structure of ethics support services would not have
to be radically altered to suit cultural variations among the surveyed countries
Enhancing proton acceleration by using composite targets
Efficient laser ion acceleration requires high laser intensities, which can
only be obtained by tightly focusing laser radiation. In the radiation pressure
acceleration regime, where the tightly focused laser driver leads to the
appearance of the fundamental limit for the maximum attainable ion energy, this
limit corresponds to the laser pulse group velocity as well as to another limit
connected with the transverse expansion of the accelerated foil and consequent
onset of the foil transparency. These limits can be relaxed by using composite
targets, consisting of a thin foil followed by a near critical density slab.
Such targets provide guiding of a laser pulse inside a self-generated channel
and background electrons, being snowplowed by the pulse, compensate for the
transverse expansion. The use of composite targets results in a significant
increase in maximum ion energy, compared to a single foil target case.Comment: 16 pages, 9 figure
Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy
Radiation pressure acceleration (RPA) is a highly efficient mechanism of
laser-driven ion acceleration, with with near complete transfer of the laser
energy to the ions in the relativistic regime. However, there is a fundamental
limit on the maximum attainable ion energy, which is determined by the group
velocity of the laser. The tightly focused laser pulses have group velocities
smaller than the vacuum light speed, and, since they offer the high intensity
needed for the RPA regime, it is plausible that group velocity effects would
manifest themselves in the experiments involving tightly focused pulses and
thin foils. However, in this case, finite spot size effects are important, and
another limiting factor, the transverse expansion of the target, may dominate
over the group velocity effect. As the laser pulse diffracts after passing the
focus, the target expands accordingly due to the transverse intensity profile
of the laser. Due to this expansion, the areal density of the target decreases,
making it transparent for radiation and effectively terminating the
acceleration. The off-normal incidence of the laser on the target, due either
to the experimental setup, or to the deformation of the target, will also lead
to establishing a limit on maximum ion energy.Comment: 17 pages, 6 figure
Charged State of a Spherical Plasma in Vacuum
The stationary state of a spherically symmetric plasma configuration is
investigated in the limit of immobile ions and weak collisions. Configurations
with small radii are positively charged as a significant fraction of the
electron population evaporates during the equilibration process, leaving behind
an electron distribution function with an energy cutoff. Such charged plasma
configurations are of interest for the study of Coulomb explosions and ion
acceleration from small clusters irradiated by ultraintense laser pulses and
for the investigation of ion bunches propagation in a plasma
DNA methylation changes induced by long and short photoperiods in Nasonia
Many organisms monitor the annual change in day length and use this information for the timing of their seasonal response. However, the molecular mechanisms underlying photoperiodic timing are largely unknown. The wasp Nasonia vitripennis is an emerging model organism that exhibits a strong photoperiodic response: Short autumnal days experienced by females lead to the induction of developmental arrest (diapause) in their progeny, allowing winter survival of the larvae. How female Nasonia control the developmental trajectory of their offspring is unclear. Here, we took advantage of the recent discovery that DNA methylation is pervasive in Nasonia and tested its role in photoperiodism. We used reduced representation bisulfite sequencing (RRBS) to profile DNA methylation in adult female wasps subjected to different photoperiods and identified substantial differential methylation at the single base level. We also show that knocking down DNA methyltransferase 1a (Dnmt1a), Dnmt3, or blocking DNA methylation pharmacologically, largely disrupts the photoperiodic diapause response of the wasps. To our knowledge, this is the first example for a role of DNA methylation in insect photoperiodic timing
Three Dimensional Relativistic Electromagnetic Sub-cycle Solitons
Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were
observed in 3D Particle-in-Cell simulations of an intense short laser pulse
propagation in an underdense plasma. Their structure resembles that of an
oscillating electric dipole with a poloidal electric field and a toroidal
magnetic field that oscillate in-phase with the electron density with frequency
below the Langmuir frequency. On the ion time scale the soliton undergoes a
Coulomb explosion of its core, resulting in ion acceleration, and then evolves
into a slowly expanding quasi-neutral cavity.Comment: 5 pages, 6 figures;
http://www.ile.osaka-u.ac.jp/research/TSI/Timur/soliton/index.htm
Adição de gordura à dieta de bovinos de leite submetidos à transferência de embriões.
bitstream/item/43881/1/boletim-17.pd
- …
