186 research outputs found

    Mapping Histories of Art Education In New South Wales

    Get PDF
    This article examines the historical discourse relating to the field of art education in New South Wales from the nineteenth through to the late twentieth century. While discussing antecedent historiography relating to the history of art education in Australia, it argues that the tasks associated with that history are incomplete. By focusing on the system of art education in New South Wales, the paper refers to the differences between specific state-based systems of art education in Australia. It indicates the advantages of recognizing the effect of sexual, ideological, psychological, and other social and educational practices when writing historical material about art education. It introduces evidence that some of the most common perceptions of the history of Australian art education require more detailed scrutiny.l’éducation en arts en Nouvelles Galles du Sud, depuis le XIXe siècle jusqu’à la fin du XXe siècle. Faisant état de l’historiographie touchant l’histoire de l’éducation en arts en Australie, l’auteur soutient que cette historiographie présente des lacunes. En mettant l’accent sur le système d’éducation en arts en Nouvelles Galles du Sud, le texte fait référence aux différences entre des systèmes étatiques particuliers d’éducation en arts australiens. Il souligne les avantages à reconnaître l’influence des pratiques d’ordre sexuel, idéologique, psychologique ainsi que social et éducatif lorsqu’il s’agit d’écrire l’histoire de l’éducation en arts. Arguments à l’appui, il montre que certaines des perceptions les plus répandues de l’histoire de l’éducation en arts en Australie requièrent une analyse plus fouillée

    Coupling of Smoothened to inhibitory G proteins reduces voltage-gated K

    Get PDF
    SMO (Smoothened), the central transducer of Hedgehog signaling, is coupled to heterotrimeric Gi proteins in many cell types, including cardiomyocytes. In this study, we report that activation of SMO with SHH (Sonic Hedgehog) or a small agonist, purmorphamine, rapidly causes a prolongation of the action potential duration that is sensitive to a SMO inhibitor. In contrast, neither of the SMO agonists prolonged the action potential in cardiomyocytes from transgenic GiCT/TTA mice, in which Gi signaling is impaired, suggesting that the effect of SMO is mediated by Gi proteins. Investigation of the mechanism underlying the change in action potential kinetics revealed that activation of SMO selectively reduces outward voltage-gated K+ repolarizing (Kv) currents in isolated cardiomyocytes and that it induces a down-regulation of membrane levels of Kv4.3 in cardiomyocytes and intact hearts from WT but not from GiCT/TTA mice. Moreover, perfusion of intact hearts with Shh or purmorphamine increased the ventricular repolarization time (QT interval) and induced ventricular arrhythmias. Our data constitute the first report that acute, noncanonical Hh signaling mediated by Gi proteins regulates K+ currents density in cardiomyocytes and sensitizes the heart to the development of ventricular arrhythmias. © 2018 Cheng et al

    Hepatitis C virus attenuates mitochondrial lipid β-oxidation by downregulating mitochondrial trifunctional-protein expression

    Get PDF
    The course of hepatitis C virus (HCV) infection and disease progression involves alterations in lipid metabolism, leading to symptoms such as hypocholesterolemia and steatosis. Steatosis can be induced by multiple mechanisms, including increases in lipid biosynthesis and uptake, impaired lipoprotein secretion, and/or attenuation of lipid β-oxidation. However, little is known about the effects of HCV on lipid β-oxidation. A previous proteomics study revealed that HCV interacted with both the α- and β-subunits of the mitochondrial trifunctional protein (MTP), an enzyme complex which catalyzes the last 3 steps of mitochondrial lipid β-oxidation for cellular energy production. Here we show that in HCV-infected Huh7.5 cells, lipid β-oxidation was significantly attenuated. Consistently with this, MTP protein and mRNA levels were suppressed by HCV infection. A loss-offunction study showed that MTP depletion rendered cells less responsive to alpha interferon (IFN-α) treatment by impairing IFN-stimulated gene expression. These aspects of host-virus interaction explain how HCV alters host energy homeostasis and how it may also contribute to the establishment of persistent infection in the liver

    A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations

    Get PDF
    Exposure to carbon monoxide (CO) causes early afterdepolarization arrhythmias. Previous studies in rats indicated arrhythmias arose due to augmentation of the late Na+ current. The purpose of the present study was to examine the basis of CO-induced arrhythmias in guinea pig myocytes in which action potentials more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes and also from HEK293 cells expressing wild-type or a C723S mutant form of Kv11.1 (ERG). We also monitored formation of peroxynitrite (ONOO-) in HEK293 cells fluorimetrically. CO, applied as the CO releasing molecule, CORM-2, prolonged action potentials and induced early after-depolarizations (EADs) in guinea pig myocytes. In HEK293 cells CO inhibited wild-type but not C723S mutant Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors or inhibition of nitric oxide formation. CO also raised ONOO- levels, an effect reversed by the ONOO- scavenger, FeTPPS which also prevented CO inhibition of Kv11.1 currents, and abolished the effects of CO on Kv11.1 tail currents and action potentials in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via ONOO--mediated inhibition of Kv11.1 K+ channel

    Multiple Oxygen Tension Environments Reveal Diverse Patterns of Transcriptional Regulation in Primary Astrocytes

    Get PDF
    The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity

    VennPlex--a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints.

    Get PDF
    With the development of increasingly large and complex genomic and proteomic data sets, an enhancement in the complexity of available Venn diagram analytical programs is becoming increasingly important. Current freely available Venn diagram programs often fail to represent extra complexity among datasets, such as regulation pattern differences between different groups. Here we describe the development of VennPlex, a program that illustrates the often diverse numerical interactions among multiple, high-complexity datasets, using up to four data sets. VennPlex includes versatile output features, where grouped data points in specific regions can be easily exported into a spreadsheet. This program is able to facilitate the analysis of two to four gene sets and their corresponding expression values in a user-friendly manner. To demonstrate its unique experimental utility we applied VennPlex to a complex paradigm, i.e. a comparison of the effect of multiple oxygen tension environments (1–20% ambient oxygen) upon gene transcription of primary rat astrocytes. VennPlex accurately dissects complex data sets reliably into easily identifiable groups for straightforward analysis and data output. This program, which is an improvement over currently available Venn diagram programs, is able to rapidly extract important datasets that represent the variety of expression patterns available within the data sets, showing potential applications in fields like genomics, proteomics, and bioinformatics

    Regulation of the T-type Ca²⁺ channel Cav3.2 by hydrogen sulfide: Emerging controversies concerning the role of H₂S in nociception

    Get PDF
    Ion channels represent a large and growing family of target proteins regulated by gasotransmitters such as nitric oxide, carbon monoxide and, as described more recently, hydrogen sulfide. Indeed, many of the biological actions of these gases can be accounted for by their ability to modulate ion channel activity. Here, we report recent evidence that H₂S is a modulator of low voltage-activated T-type Ca²⁺ channels, and discriminates between the different subtypes of T-type Ca²⁺ channel in that it selectively modulates Cav3.2, whilst Cav3.1 and Cav3.3 are unaffected. At high concentrations, H₂S augments Cav3.2 currents, an observation which has led to the suggestion that H₂S exerts its pro-nociceptive effects via this channel, since Cav3.2 plays a central role in sensory nerve excitability. However, at more physiological concentrations, H₂S is seen to inhibit Cav3.2. This inhibitory action requires the presence of the redox-sensitive, extracellular region of the channel which is responsible for tonic metal ion binding and which particularly distinguishes this channel isoform from Cav3.1 and 3.3. Further studies indicate that H₂S may act in a novel manner to alter channel activity by potentiating the zinc sensitivity/affinity of this binding site. This review discusses the different reports of H₂S modulation of T-type Ca²⁺ channels, and how such varying effects may impact on nociception given the role of this channel in sensory activity. This subject remains controversial, and future studies are required before the impact of T-type Ca²⁺ channel modulation by H₂S might be exploited as a novel approach to pain management
    corecore