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Abstract     

Ion channels represent a large and growing family of target proteins regulated by 

gasotransmitters such as nitric oxide, carbon monoxide and, as described more recently, 

hydrogen sulfide. Indeed, many of the biological actions of these gases can be accounted 

for by their ability to modulate ion channel activity. Here, we report recent evidence that H2S 

is a modulator of low voltage-activated T-type Ca2+ channels, and discriminates between 

the different subtypes of T-type Ca2+ channel in that it selectively modulates Cav3.2, whilst 

Cav3.1 and Cav3.3 are unaffected. At high concentrations, H2S augments Cav3.2 currents, 

an observation which has led to the suggestion that H2S exerts its pro-nociceptive effects 

via this channel, since Cav3.2 plays a central role in sensory nerve excitability. However, at 

more physiological concentrations, H2S is seen to inhibit Cav3.2. This inhibitory action 

requires the presence of the redox-sensitive, extracellular region of the channel which is 

responsible for tonic metal ion binding, and which particularly distinguishes this channel 

isoform from Cav3.1 and 3.3. Further studies indicate that H2S may act in a novel manner 

to alter channel activity by potentiating the zinc sensitivity  / affinity of this binding site. This 

review discusses the different reports of H2S modulation of T-type Ca2+ channels, and how 

such varying effects may impact on nociception, given the role of this channel in sensory 

activity. This subject remains controversial, and future studies are required before the impact 

of T-type Ca2+ channel modulation by H2S might be exploited as a novel approach to pain 

management. 

 

 

Abbreviations :   

CAT, cysteine aminotransferase; CBS, cystathionine ȕ synthase; CO, carbon monoxide; 

CSE, cystathionine Ȗ lyase; DRG neuron, dorsal root ganglion neuron; DTT, dithiothreitol; 

H2S, hydrogen sulphide; HEK293 cells, human embryonic kidney cells; RMP, resting 

membrane potential; LTMR, low threshold mechanoreceptor; MCO, metal-catalysed 

oxidation; 3-MST, 3-mercaptopyruvate sulfurtransferase; NaHS, sodium hydrosulfide 

hydrate; NMDAR, N-methyl-D-aspartate receptor; NO, nitric oxide; TPEN, N,N,N',N'-

tetrakis(2-pyridylmethyl)ethane-1,2-diamine; TRP, Transient receptor potential channels.  
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Introduction  

Ion channel activity is central to a vast and diverse array of cellular functions in both excitable 

and non-excitable cell types. They control, for example, gene expression, apoptosis, 

proliferation, contractility, fluid transport, exocytosis, excitability and action potential 

propagation. It is therefore unsurprising that the number of genes encoding ion channel 

proteins (either the pore-forming proteins or auxiliary subunits) runs into the hundreds. This 

diversity is further increased by splice variation and also the fact that subunits of different 

channel types can form functional channels by combining with other (albeit related) subunits 

to form heteromeric complexes. Of the many functions regulated by ion channels one of the 

most important is the control of [Ca2+]i as this ion is a ubiquitous intracellular signalling 

molecule that mediates many of the ways in which channels influence the above-mentioned 

fundamental cellular functions (Berridge et al., 2003;Clapham, 2007). Here, we discuss 

recently discovered new modes of regulation of one specific class of Ca2+ channel, the 

voltage-gated T-type Ca2+ channel.   

Tailoring ion channel activity to serve specific and often co-ordinated roles requires not only 

the availability of multiple channel types, but also that they can be dynamically regulated. 

This can occur by a plethora of means; for example by coupling to specific G-proteins and 

via numerous post-translational modifications including phosphorylation, ubiquitination, 

sumoylation, nitrosylation, sulfhydration and S-acylation (Rajan et al., 2005;Lipscombe et 

al., 2013;Gonzalez et al., 2009;Mustafa et al., 2011;Shipston, 2014). Such modifications can 

regulate ion channel trafficking and membrane insertion, as well as ongoing activity. In 

recent years, it has become apparent that ion channels are also modulated by endogenously 

generated, biologically active gases, often termed gasotransmitters; such as nitric oxide, 

carbon monoxide and hydrogen sulfide (NO, CO and H2S respectively). The roles of these 

gases, especially NO, in diverse physiological and pathological settings have in many 

instances been long-established, but the concept that they represent a new class of ion 

channel regulators is currently emerging (Wilkinson & Kemp, 2011;Peers et al., 2012;Peers 

et al., 2014). In this article, we focus on H2S specifically as a modulator of voltage-gated T-

type Ca2+ channels.  
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T-type Ca 2+ channels  

When first described at the single channel level, this class of voltage-gated Ca2+ channel 

was named “T-type” since members had a relatively tiny conductance and gave rise to 

transient currents (Nowycky et al., 1985). These channels are also distinguished from other 

voltage-gated Ca2+ channels by their rapid activation, slow deactivation and very negative 

activation thresholds, as low as -60mV or even below (Carbone & Lux, 1984;Perez-Reyes, 

2003;Iftinca & Zamponi, 2009). Example currents are shown in Fig. 1A, and a typical current-

voltage relationship is presented in Fig. 1B. Owing to this low threshold for activation, they 

also may display a significant window current (i.e. display tonic activity; Fig. 1C, arrowed) at 

potentials close to the resting membrane potential (RMP), and so can provide a sustained 

route for Ca2+ entry into resting cells (exemplified in Fig. 1D) and also contribute to setting 

the RMP (Perez-Reyes, 2003). Three genes, CACNA1G, CACNA1H and CACNA1I give rise 

to pore-forming α-subunits of T-type Ca2+ channels, which are nowadays referred to 

respectively as Cav3.1-3.3 (Catterall et al., 2005), with Cav3.3 showing relatively slower 

activation and inactivation kinetics than Cav3.1 or Cav3.2 (Fig. 1A). Heterologous 

expression of individual Cav3 α-subunits gives rise to currents which closely resemble native 

T-type Ca2+ currents, suggesting that auxiliary subunits are not required for assembly of 

functional Ca2+ channels, although other channel properties and trafficking may indeed be 

affected by the auxiliary subunits (Dolphin et al., 1999).  

T-type Ca2+ channels are widely distributed, but their physiological functions have 

sometimes proved difficult to resolve. This is certainly true in vascular smooth muscle cells 

(VSMCs), where Cav3.1 and Cav3.2 are expressed. Numerous attempts have failed to 

record “classic” T-type Ca2+ channel activity in VSMCs (reviewed in (Kuo et al., 2011;Kuo et 

al., 2014)). Recent studies suggest this is because VSMCs primarily express T-type Ca2+ 

channel splice variants which do not activate at the low voltages normally associated with 

T-type Ca2+ channels. Instead, they activate over more depolarised voltage ranges as are 

observed for L-type Ca2+ channels. Splice variation accounting for these differences occurs 

in Cav3.1 (and similarly in Cav3.2) primarily around exons 25 and 26, corresponding to the 

intracellular linker region between domains III and IV (Chemin et al., 2001;Emerick et al., 

2006;Latour et al., 2004). Four variants have been identified, termed 25a, 25b, 25bc and 

25ac, with variant 25bc predominating in both the juvenile and mature systemic vasculature. 

These variants all contribute to vasomotor tone (Kuo et al., 2011;Kuo et al., 2014), and may 
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also have a pacemaker role, controlling slow Ca2+ waves and contractile oscillations (Cribbs, 

2006).  

Despite continued uncertainty around the physiological roles of T-type Ca2+ channels in the 

vasculature, it appears that in several vascular diseases the influence of T-type Ca2+ 

channels, particularly Cav3.1, becomes more prominent. Their increased expression and 

activity appears to be instrumental in pathological vascular remodelling in both the systemic 

and pulmonary circulation, providing a route for Ca2+ entry which is required for proliferation 

(Tzeng et al., 2012;Chevalier et al., 2014). Interestingly, numerous cancers also rely on the 

expression of T-type Ca2+ channels for proliferation, and hence tumour growth 

(Dziegielewska et al., 2014). These findings suggest that they represent a promising 

therapeutic target in the treatment of various cancers and cardiovascular diseases.   

In the nervous system, T-type Ca2+ channels serve better defined roles. Thus, for example, 

in thalamic and corticothalamic neurones T-type Ca2+ channels are responsible for 

pacemaker activity and low threshold spikes (Huguenard & Prince, 1994), as illustrated in 

the cartoon of Fig. 1E. They contribute to “rebound” bursts of spikes following a 

hyperpolarizing postsynaptic potential. Indeed, evidence suggests that all three isoforms of 

T-type Ca2+ channels can contribute to this excitability (Kim et al., 2001;Joksovic et al., 

2006;Lee et al., 2014). In the peripheral nervous system, T-type Ca2+ channels are 

prominent in somatosensory fibres including small, capsaicin-sensitive (presumed 

nociceptive) dorsal root ganglion (DRG) neurons (Jevtovic-Todorovic & Todorovic, 

2006;Nelson et al., 2006;Rose et al., 2013) as well as in two distinct populations of low-

threshold mechanoreceptors (LTMRs), Aδ- and C-LTMRs, innervating skin hair follicles 

(Francois et al., 2015). Cav3.2 is the dominant form in DRG and may even be the exclusive 

form in some mechanosensitive neurons (Shin et al., 2003). They can control burst firing in 

DRG neurons (White et al., 1989) and so strongly influence excitability (Nelson et al., 

2005;Nelson et al., 2007a), implying they are of central importance to nociception since 

stimulus intensity correlates with burst frequency. Indeed, the role of T-type Ca2+ channels 

in pain is well recognised and has been covered in depth in several recent reviews (Bourinet 

et al., 2014;Todorovic & Jevtovic-Todorovic, 2014;Francois et al., 2014;Waxman & 

Zamponi, 2014;Zamponi et al., 2015). Thus, conditional genetic deletion (Francois et al., 

2015), or downregulation of Cav3.2 in DRG using intrathecal injection of antisense 

oligonucleotides (Bourinet et al., 2005;Messinger et al., 2009) produced strong anti-
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nociceptive effects in rodent pain models of neuropathic and inflammatory pain. Conversely, 

T-type Ca2+ currents are often increased in pathological conditions associated with chronic 

pain, such as diabetic neuropathy (Jagodic et al., 2007;Messinger et al., 2009), peripheral 

nerve injury or inflammation (Jagodic et al., 2008;Garcia-Caballero et al., 2014;Marger et 

al., 2011). Both the enhancement of channel trafficking (Orestes et al., 2013;Weiss et al., 

2013) and enhanced deubiquitination (Garcia-Caballero et al., 2014) were reported as 

underlying mechanisms for the latter phenomenon.  

It is not entirely clear how exactly T-type Ca2+ channels participate in the nociceptive 

transmission. Cav3.2 channel expression has been detected in different compartments of 

afferent fibers including peripheral nociceptive terminals and axons of skin afferents (Rose 

et al., 2013;Francois et al., 2015), nodes of Ranvier of Aδ fibers (Francois et al., 2015) as 

well as in the presynaptic terminals of nociceptive fibers in the spinal cord ((Jacus et al., 

2012) however, cf. Francois et al., 2015). Therefore, multiple mechanisms (or their 

combinations) are conceivable, including setting the threshold for action potential generation 

(at the nerve terminals) and propagation (at the nodes of thinly myelinated fibres), supporting 

burst firing, or indeed promoting synaptic activity at the central terminals of afferent fibres. 

Finally, since T-type Ca2+ channels are expressed in skin terminals of low threshold 

mechanoreceptors, including D-hair cells (Coste et al., 2007;Francois et al., 2015), a more 

direct role of T-type Ca2+ channels in mechanotransduction also cannot be excluded.     

In accordance with strong evidence for the physiological role of T-type Ca2+ channels in 

pain, recent data clearly demonstrated that pharmacological inhibition of T-type Ca2+ 

channel activity produces strong anti-nociceptive effects in various rodent pain models 

(Todorovic et al., 2001;Todorovic et al., 2002;Todorovic et al., 2004;Latham et al., 2009). 

Together with N-type Ca2+ channels, T-type Ca2+ channels are clinically validated drug 

targets for pain (Bourinet et al., 2014). Accordingly, intense search is currently underway for 

novel pharmacological tools targeting T-type Ca2+ channel activity. These need to be more 

selective than widely used blockers such as mibefradil which, despite its ability to inhibit T-

type Ca2+ channels, is not highly selective (Bezprozvanny & Tsien, 1995). This new 

generation of more selective T-type inhibitors (e.g. TTA-A2, TTA-P2, KYS-05090S) shows  

promising analgesic properties in animal models of pain (Choe et al., 2011;Francois et al., 

2013). Another novel, selective and orally bioavailable T-type Ca2+ channel blocker, Z944, 

which showed analgesic activity in animal models of inflammatory and neuropathic pain, is 
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currently being tested in clinical trials as a first-in-class novel oral analgesic (Lee, 2014). 

Moreover, Zamponi’s lab has recently developed small molecule modulators that prevent 

deubiquitination of the Cav3.2 channels by the deubiquitinase USP5, which in turn, can 

prevent channel upregulation in chronic pain conditions (Gadotti et al., 2015). 

A redox - and Zn 2+-sensitiv e ‘module ’ within the Cav3.2  subunit   

Studies in both native DRG neurons and recombinant expression systems have revealed a 

regulatory site within Cav3.2 which confers high sensitivity to redox agents, distinguishing it 

functionally from both Cav3.1 and Cav3.3. Thus, for example, T-type Ca2+ currents recorded 

in native nociceptive neurones and recombinant Cav3.2 currents are enhanced by reducing 

agents (dithiothreitol (DTT) or L-cysteine) and inhibited by the oxidising agent 5,5’-dithio-

bis(2-nitrobenzoic acid) (DTNB) (Nelson et al., 2007a). Sensitivity to these agents was 

exploited in order to demonstrate the importance of Cav3.2 in nociception: hindpaw 

injections of DTT or L-cysteine induces thermal and mechanical hyperalgesia (Todorovic et 

al., 2001), and such effects are prevented with the Ca2+ channel inhibitor mibefradil; 

furthermore, analgesic effects are observed with DTNB (Todorovic et al., 2001). Such 

findings were confirmed in a subpopulation of nociceptive neurons expressing high levels of 

Cav3 channels (Nelson et al., 2005). An important breakthrough in the field was achieved 

by the joint work of Perez-Reyes’ and Lee’s groups which allowed the characterization of 

specific Cav3.2 residues involved in the metal-induced inhibition of the Ca2+ channel. The 

redox-sensitive module is located extracellularly, involving interaction of the extracellular 

IS1-IS2 linker region with the IS3-IS4 linker region (Kang et al., 2010), the latter region 

containing a histidine residue (H191) which is key to conferring high redox sensitivity to this 

channel. Intriguingly, the same H191 residue that is involved in modulation of T-type Ca2+ 

channel activity by redox mechanisms also mediates T-type Ca2+ channel inhibition by low 

(sub-micromolar) concentrations of extracellular Zn2+ (Kang et al., 2006;Kang et al., 2010). 

The full Zn2+ binding site also includes residues that precede H191, namely D189 and G190, 

as well as the negatively charged residues at the outer portion of the IS2 segment (Kang et 

al., 2010). It is, as yet, unclear how exactly the redox- and Zn2+-mediated modulatory 

pathways converge at the same site but one hypothesis suggests that H191 may represent 

a general binding site for transition metals (e.g. iron, copper, zinc) and can be subject to 

oxidation via a metal-catalysed oxidation (MCO) reaction (Stadtman, 2001;Nelson et al., 

2007a). It is conceivable therefore that either binding of metal (e.g. Zn2+) or Zn2+-
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independent MCO of H191 may result in a similar inhibition of channel activity. An alternative 

hypothesis is that oxidative modification (possibly but not necessarily at H191) can increase 

the effect of metal binding either by increasing the affinity at the binding site or by enhancing 

coupling efficiency between the metal binding and channel inhibition. In such a scenario, 

oxidative modification could result in sensitization of the channel to Zn2+ (and potentially 

other transition metals) making the channel sensitive to ambient concentrations in biological 

fluids. Total Zn2+ concentration in human plasma is reported to be within the range of 5-20 

µM (Moran et al., 2012). Although it is likely that the free [Zn2+] is considerably lower, it is 

still quite plausible that the extracellular free [Zn2+] can reach the nanomolar range at which 

changes in Zn2+ affinity/sensitivity of Cav3.2 subunits may result in noticeable changes in 

channel activity. While the exact mechanism of regulation of Cav3.2 activity via the H191-

containing regulatory site remains to be elucidated, it is clear that redox modulation is 

involved in the action on the T-type Ca2+ channels of some pharmacological agents and 

physiological signalling cascades including nitrous oxide (Orestes et al., 2011), CO and 

thioredoxin (Boycott et al., 2013), as well as GABAB receptors (Huang et al., 2015).   

H2S as a gasotransmitter   

H2S is regarded as the third ‘gasotransmitter’, since it is an endogenous, enzymatically-

generated, biologically active gas. Emerging evidence indicates that it has widespread 

physiological and pathophysiological importance throughout the body (Li et al., 2011). 

Unsurprisingly, therefore, it has received increasing interest as a potential therapeutic target 

over the past decade or so, as was the case previously for both NO and CO (Leffler et al., 

2006;Moore et al., 2003;Szabo, 2007). H2S is generated primarily by the action of two widely 

distributed enzymes, cystathionine γ lyase (CSE) and cystathionine β synthetase (CBS; Fig. 

2). Both synthesise the gas from L-cysteine. More recently, the mitochondrially-located 3-

mercaptopyruvate sulfurtransferase (3-MST) has also been found to generate H2S in both 

the brain and vasculature (Fig. 2). 3-MST generates H2S from 3-mercaptopyruvate which is 

itself generated by cysteine aminotransferase (CAT; (Kimura, 2010)). Red blood cells can 

generate H2S non-enzymatically from inorganic polysulfides, a finding which has prompted 

the idea that H2S may mediate the beneficial vascular effects of dietary garlic (Benavides et 

al., 2007). H2S is also known to be liberated in a redox- or pH-sensitive manner from sulfur 

‘stores’; i.e. sulfur bound to proteins in mitochondria or the cytosol (Kimura, 2010). 

Differential distribution of H2S-generating enzymes results in a predomination of CBS in the 
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central nervous system, along with 3-MST (Leffler et al., 2006); whereas CSE is dominant 

peripherally, generating the majority of H2S elsewhere in the body, including the vasculature. 

More recently, H2S has been shown to be generated from D-cysteine (Fig. 2), particularly in 

the cerebellum and kidney, via a novel pathway involving 3-MST and D-amino acid oxidase 

(Shibuya et al., 2013).   

H2S as a regulator of ion channels  

Ion channels (specifically NMDA receptors; (Abe & Kimura, 1996)) were amongst the first 

family of cellular proteins recognized as being molecular targets of H2S. Since then, reports 

of ion channel regulation by H2S have grown rapidly (Peers et al., 2012;Kuksis & Ferguson, 

2015;Zhang et al., 2015), as suggested in Fig. 2. It is clear that modulation by H2S is not 

confined to any particular class of ion channels (such as voltage- or ligand-gated channels) 

or to channels which are selective for specific ions (e.g. K+, Na+ , Ca2+ or Cl-)(Zhang et al., 

2015). H2S is also known to interfere with a number of intracellular signalling pathways 

(Wang, 2012), and it is via these pathways that H2S, in some cases, modifies ion channel 

activity. In other cases, direct post-translational modification accounts for its effects. The 

best studied of these is the vascular smooth muscle ATP-sensitive K+ channel (KATP 

channel), which becomes more active when sulfhydrated (i.e. when –SH groups within 

cysteine residues are altered to –SSH groups). This direct process (also known as 

persulfidation; see (Paul & Snyder, 2015)) contributes to vasorelaxation and thereby 

protects against hypertension (Paul & Snyder, 2012;Mustafa et al., 2011).  

The list of ion channels regulated by H2S is long and continues to grow. However, some 

areas of contention have arisen along the way. Thus, for example, inhibition by H2S of the 

high-conductance, Ca2+-sensitive K+ channel has been described in detail (Telezhkin et al., 

2010), yet others report activation of this channel by H2S (Sitdikova et al., 2010;Jackson-

Weaver et al., 2013). Similarly, inhibition of L-type Ca2+ channels in cardiac myocytes (Sun 

et al., 2008;Avanzato et al., 2014) contrasts with the observed augmentation of L-type Ca2+ 

channel activity reported in astrocytes (Nagai et al., 2004). Such discrepancies may have 

simple explanations, but these need to be identified if H2S modulation of ion channels is to 

be exploited therapeutically. The remainder of this review is focussed on the known pro-

algesic effects of H2S and considers the recent, conflicting data concerning the role of T-

type Ca2+ channels in this process.  
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H2S as a regulator of Cav3.2  

Our group has recently reported an inhibitory effect of micromolar concentrations of H2S on 

recombinant and native T-type Ca2+ channels in sensory neurons (Elies et al., 2014).  

Among Cav3 subunits, this effect was selective to Cav3.2 while Cav3.1 and Cav3.3 were 

insensitive to H2S. In agreement with the predominant expression of Cav3.2 subunits in 

DRG neurons, H2S also strongly inhibited endogenous low-voltage activated (LVA) currents 

in these neurons. Interestingly, the same extracellular histidine residue H191, which is 

necessary for Cav3.2 modulation by Zn2+ and redox agents, was also found critical for the 

effect of H2S. Thus, an H191Q mutation in Cav3.2 abolished channel sensitivity to H2S and 

the analogous reciprocal mutation in Cav3.1 (Q172H) conferred sensitivity to H2S on this 

subunit (Elies et al., 2014). It is not entirely clear exactly how redox/Zn2+-binding of Cav3.2 

is implicated in this H2S-mediated effect but one theory is that H2S may increase channel 

sensitivity to extracellular Zn2+. Indeed, chelation of ambient Zn2+ with TPEN (N,N,N',N'-

tetrakis(2-pyridylmethyl)ethane-1,2-diamine) fully reversed the H2S-mediated T-type Ca2+ 

channel inhibition. Moreover, pre-treatment with TPEN abolished H2S-mediated inhibition 

when H2S was applied in the continued presence of TPEN. However, subsequent washing 

out of TPEN in the presence of H2S allowed the inhibition to commence (Elies et al., 2014). 

Thus, the action of H2S on Cav3.2 seems to depend on ambient Zn2+, assumed to be present 

in extracellular solutions in trace amounts. Indeed, according to our atomic absorption 

spectroscopy measurements, total Zn2+ levels can reach micromolar levels in nominally 

zinc-free laboratory solutions (Huang & Gamper, unpublished); likewise, micromolar 

concentrations of Zn2+ in plasma are also reported (Moran et al., 2012). While levels of free 

Zn2+ are likely to be much lower as compared to the total zinc, it is still likely that this metal 

is present in the extracellular milieu at levels sufficient to affect channel activity. We 

hypothesize that the action of H2S results in the potentiation of channel inhibition by such 

ambient Zn2+, via a mechanism which may share commonalities with the redox modulation 

of Cav3.2 (see Abstract Figure).   

Although our data strongly suggest that H2S inhibits Cav3.2 and the endogenous T-type 

Ca2+ currents in DRG neurons, there is an alternative theory suggesting that H2S augments 

T-type Ca2+ currents, possibly by chelating Zn2+, and that this augmentation underlies the 

pro-algesic actions of this gasotransmitter (Matsunami et al., 2011;Kawabata et al., 

2007;Takahashi et al., 2010;Maeda et al., 2009). Thus, injection of the H2S-donor NaHS into 
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the rat hindpaw produced hyperalgesia which was abolished by the oxidizing agent DTNB 

(5,5'-dithiobis-(2-nitrobenzoic acid)) and by the pharmacological inhibition of T-type Ca2+ 

channels (Kawabata et al., 2007). Inhibition of endogenous H2S production also produced 

an anti-algesic effect. This and other studies by the same group led them to conclude that 

H2S could activate or “sensitize” Cav3.2 channels in order to account for its pro-algesic 

effects (Takahashi et al., 2010;Kawabata et al., 2007). Furthermore, H2S-induced colonic 

pain could be mimicked by chelation of Zn2+ (Matsunami et al., 2011). Yet, most of the 

evidence suggesting that pro-algesic effects of H2S are mediated by T-type Ca2+ channel 

augmentation is somewhat circumstantial and direct electrophysiological evidence is sparse 

and insubstantial. For example, pre-incubation of NG108-15 cells with 1.5 mM NaHS 

resulted in ~20% augmentation of endogenous T-type Ca2+ current while at 0.5mM the effect 

was not significant (Kawabata et al., 2007). Another study demonstrated that pre-incubation 

of HEK293 cells exogenously expressing Cav3.2 channels with the CSE inhibitor 

propargylglycine resulted in a reduction of the current, which was interpreted as tonic 

augmentation of recombinant Cav3.2 by endogenous H2S (Sekiguchi et al., 2014). 

Interestingly, only in the presence of this inhibitor were currents augmented by NaHS. These 

experiments are consistent with potential augmentation of T-type Ca2+ currents by H2S but 

the following has to be taken into account: i) only very high, millimolar concentrations of 

NaHS were efficacious; ii) due to the experimental protocol used (pre-incubation) these 

experiments did not directly assess the acute effect of H2S on T-type Ca2+ channel activity.  

In our hands, increasing the NaHS concentration to 3mM did augment recombinant Cav3.2 

currents, while even higher concentrations were needed to significantly augment native T-

type Ca2+ channel currents in DRG neurons (Elies et al., 2014). These experiments can, to 

some degree, reconcile conflicting experimental evidence from different laboratories and 

suggest a dual effect of H2S on T-type Ca2+ channels: H191-mediated inhibition at low 

(micromolar) concentrations and potentiation (due to an unknown mechanism) at high 

(several mM) concentrations. It is important to point out, however, that the presence H2S at 

millimolar concentrations in mammalian tissues is highly unlikely. Initial reports estimated 

plasma H2S levels within the range of 20–100 µM (Li and Moore, 2008), but even these 

values are now regarded as overestimations (Li et al., 2011). Therefore, physiologically 

relevant concentrations of H2S are unlikely to be sufficiently high to produce T-type Ca2+ 

channel augmentation. The expected effect of endogenous H2S is, therefore, inhibition of T-

type Ca2+ channel currents, at least in cells and tissues that express significant amounts of 
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Cav3.2 (such as sensory neurons). Therefore, the hypothesis that physiological levels of 

H2S can trigger pro-algesic effects via T-type Ca2+ channel activation appears questionable 

at present. Furthermore,  in our view, it is also unlikely that H2S can act as a Zn2+ chelator 

(as was suggested by (Matsunami et al., 2011) as i) chemical properties of H2S do not 

suggest metal chelating properties (e.g. the ability to form polydentate complexes); ii) acute 

application of H2S leads to T-type Ca2+ channel current inhibition, whereas Zn2+ chelation 

with TPEN causes current augmentation (Nelson et al., 2007b;Elies et al., 2014); iii) 

application of TPEN completely reverses H2S-induced T-type Ca2+ channel inhibition; iv) 

pre-application of TPEN renders H2S unable to inhibit T-type Ca2+ channels.  

At present, whilst it is hard to envisage how the painful / hyperalgesic effects of H2S 

(especially these of endogenously produced H2S) can be mediated by its effect on T-type 

Ca2+ channels, other possible targets may account for this action. Thus, H2S was suggested 

to produce some of its pro-algesic effects via TRPA1 activation (Andersson et al., 2012;Hsu 

et al., 2013). Additionally, H2S was suggested to inhibit voltage-gated K+ channels in 

trigeminal sensory neurons (most likely Kv1.1 and Kv1.4) thus producing depolarizing and 

excitatory effects (Feng et al., 2013). 

Conclusions and perspectives  

Tonic H2S production clearly impacts a variety of both physiological and pathological 

processes, and likely does so in part via direct and indirect modulation of ion channel activity. 

The numerous and diverse pathways that can be modified by H2S suggest that interventional 

control of this gasotransmitter could be therapeutically beneficial (e.g. in the cardiovascular 

system and peripheral sensory neurones). However, conflicts have arisen and must be 

resolved. We believe that at least some issues could be rectified if the experimental 

conditions through which we study the effects of H2S are standardised (e.g. preparation of 

stock solutions of H2S donors, flow rates of solutions containing donors, exposure time, and 

obligatory use of agar bridges for reference electrodes).  

Twenty years after the discovery of H2S as an endogenously bioactive molecule (Abe & 

Kimura, 1996), one of the main challenges within the field remains the measurement of 

absolute concentrations of H2S, in real time, both intracellularly and in extracellular 

compartments. For instance, development of appropriate intracellular fluorescence probes 

will expand not only the knowledge regarding intracellular concentrations of H2S in space 
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and time, but it will also help to correlate experimental data obtained from exogenously-

administered H2S with experimental data obtained from endogenously-generated H2S.  

Additionally, future research regarding the physiological effects of H2S must bear in mind 

the crosstalk signalling with other gasotransmitters (NO and CO).  Only then can we obtain 

more comprehensive and uniformly acceptable data on which to build in order to design 

modulators of H2S production and signalling for translational benefit.  
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Figure legends 

Abstract Figure 

Cartoon showing the linear structure of the transmembrane domain I of the Cav3.2 T-type 

Ca2+ channel α subunit. In the ‘tonic’ channel state (middle), zinc partially occupies a binding 

site formed by interacting residues (indicated by white dots) present in IS1-IS2 and IS3-IS4 

linkers, including H191. Under these conditions, zinc causes tonic inhibition of evoked 

currents (as illustrated by example current shown below). Chelation of zinc by TPEN (left) 

augments current amplitudes via relief of tonic zinc inhibition. In the presence of H2S, zinc 

affinity appears augmented, leading to increased zinc binding and a reduction in current 

amplitude.  

Figure 1 

Properties of T-type Ca2+ channels. (A) example currents evoked by step depolarizations 

applied (according to the protocol shown above each trace) to HEK293 cells expressing 

each of the 3 classes of T-type Ca2+ channel, as indicated. Note the relatively slow activation 

and inactivation of Cav3.3 as compared with Cav3.1 and Cav3.2. (B) Schematic current-

voltage relationship typical of T-type Ca2+ channels; note the low threshold for activation. 

(C) Superimposition of steady state inactivation plot (solid line) and activation profile (dashed 

line) typical of T-type Ca2+ channels. Note the pronounced window current (region of overlap, 

arrowed). (D) Fluorimetric recording of [Ca2+]i  in a Fura-2 loaded HEK293 cell expressing 

Cav3.2. For the period indicated by the shaded area, the T-type channel blocker mibefradil 

(1µM) was applied, causing a reduction in basal [Ca2+]i (unpublished data). (E) Cartoon of 

membrane depolarizations evoked by current injections in thalamic neurones. Note the 

evoked burst activity is almost fully suppressed in cells lacking the T-type channel Cav3.1  

(see Kim et al., 2001). 

Figure 2. 

Hydrogen sulfide synthesis and effector ion channels. Schematic illustrating the synthesis 

of H2S from homocysteine, L- and D-cysteine via enzymes shown in boxes (CBS, 

cystathionine ȕ synthase;  CSE, cystathionine Ȗ lyase; 3-MST, 3-mercaptopyruvate 

sulfurtransferase; CAT, cysteine aminotransferase; DAO, D-amino acid oxidase). Some of 

the target ion channels modulated by H2S are also indicated (NMDAR, N-methyl-D-
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aspartate receptor; VGCC, voltage-gated Ca2+ channel; TRP, Transient receptor potential 

channel).   
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Figure 1
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Figure 2
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